Introducing Counting Concepts through Problem Solving:

A Teaching Experience with 8th Grade

Authors

  • Benildo State University of Paraíba (UEPB) – PPGCEM https://orcid.org/0009-0002-3812-7923
  • Roger Huanca State University of Northern Rio de Janeiro, UENF, State of Rio de Janeiro, Brazil.

Keywords:

Mathematics Teaching; Problem Solving; Elementary Education; Counting; Reasoning.

Abstract

The Fundamental Principle of Counting (FPC) is an essential concept in Discrete Mathematics, with broad applications in everyday life — from organizing menu combinations and arranging clothing to calculating statistical probabilities. However, many students encounter difficulties in understanding this principle, which can impact their performance in more advanced subjects. Thus, this experience report aims to discuss the initial potential for constructing the FPC concept through the Problem-Solving Methodology, going beyond the mere mechanical and uncritical application of algorithms. To achieve this goal, a qualitative, participatory research approach was adopted, developed with a class of 32 8th-grade students at a public elementary school in Brejo da Madre de Deus, Pernambuco, Brazil. Data analysis focused on the solutions provided to a generating problem involving the creation of name tags with specific restrictions regarding numbers and letters. The results revealed a variety of strategies, ranging from systematic enumeration to intuitive generalization of the FPC, as well as difficulties in communicating reasoning and maintaining logical organization. The findings suggest that this approach fostered meaningful conceptual understanding, going beyond the mechanical use of formulas. Thus, problem solving proved to be an effective pathway for developing intellectual autonomy and combinatorial reasoning, although it requires teacher mediation that is attentive to errors as learning opportunities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Benildo, State University of Paraíba (UEPB) – PPGCEM

Holds a degree in Mathematics from the State University Vale do Acaraú (UVA, 2012), a specialization in Mathematics Teaching and New Technologies from the Faculty of Belo Jardim (FBJ, 2015), and a master’s degree from the Professional Master's Program in Mathematics (PROFMAT) at the Federal University of Campina Grande (UFCG, 2023). Currently, he is a doctoral student in the Graduate Program in Science Teaching and Mathematics Education. He regularly participates in academic events focused on Mathematics education, with a particular interest in the methodological approach of Problem Solving as a teaching strategy. He works as a Mathematics teacher in the final years of elementary school and in high school at public institutions in the state of Pernambuco.

Roger Huanca, State University of Northern Rio de Janeiro, UENF, State of Rio de Janeiro, Brazil.

Currently, he is an associate professor at the Laboratory of Mathematical Sciences (LCMAT) of the Center for Science and Technology (CCT) at the State University of Northern Rio de Janeiro (UENF) and a researcher in the Graduate Program in Science Teaching and Mathematics Education (PPGECEM-UEPB). He holds a degree in Systems Analysis and a bachelor's degree in Mathematics, a master's degree in Mathematics Education from the São Paulo State University, and completed his Ph.D. in Mathematics Education at the São Paulo State University (UNESP, Rio Claro, SP) in 2014. He is the leader of the Research Group on Problem Solving and Mathematics Education (GPRPEM) and an associate researcher of the Working and Study Group on Problem Solving (GTERP/UNESP). He was director of the Center for Human and Exact Sciences at UEPB, a member of the University Council of UEPB (CONSUNI, 2021–2023), and coordinator of the Pedagogical Residency Program in Mathematics Teaching (CCHE/UEPB). He has published several articles in scientific journals and papers in conference proceedings. He has authored book chapters and books published in Brazil. He has presented works at national and international events. He has supervised 24 undergraduate thesis projects, 7 scientific initiation works, and 12 master's dissertations in the areas of Mathematics and Mathematics Education. He currently supervises doctoral, master's, undergraduate (final projects), and scientific initiation students. He has experience in Mathematics Education and Applied Mathematics, developing research in the following areas: Problem Solving, Mathematical Modeling, Digital Technologies, Teaching and Learning of Mathematics, and Mathematics Teacher Education.

References

ALLEVATO, N. S. G.; ONUCHIC, L. R. Ensino-Aprendizagem-Avaliação de Matemática: por que através da resolução de problemas? In: ONUCHIC, L. de la R.; ALLEVATO, N. S. G.; NOGUTI, F. C. H.; JUSTULIN, A. M. (org.). Resolução de Problemas: teoria e prática. 2. ed. Jundiaí, SP: Paco Editorial, 2021, p. 37 - 57.

ANDRADE, S. Um caminhar crítico reflexivo sobre Resolução, Exploração e Proposição de Problemas Matemático no Cotidiano da Sala de Aula. In: ONUCHIC, L. R.; JUNIOR, L. C. L.; PIRONEL, M.(Orgs). Perspectivas para Resolução de Problemas, São Paulo: Editora Livraria da Física, 2017. p. 355-395.

BRASIL. Ministério da Educação. Base Nacional Comum Curricular: Educação Infantil, Ensino Fundamental e Ensino Médio. (versão final). Brasília: MEC, 2018.

ECHEVERRÍA, M. P. P.; POZO, J. I. Aprender a resolver problemas e resolver problemas para aprender. In: POZO, J. I. (Org.). A solução de problemas: aprender a resolver, resolver para aprender. Porto Alegre: Artmed, 1998, p. 13 - 42.

GIL, A. C. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas, 2002.

GOMES, R. D.; HUANCA, R. R H. Práticas de ensino e aprendizagem em matemática: Equações do 2º grau através da resolução de problemas. 1. ed. Porto Alegre: Paco Editorial, 2024.

MINAYO, M. C. S. Pesquisa Social: teoria, método e criatividade. Petrópolis: Editora Vozes, 2010.

MORGADO, Augusto César de Oliveira; PITOMBEIRA DE CARVALHO, João Bosco; PINTO CARVALHO, Paulo Cezar; FERNANDEZ, Pedro. Análise Combinatória e Probabilidade. 11. ed. Rio de Janeiro: SBM – Sociedade Brasileira de Matemática, 2020.

MUSSI, Ricardo Franklin de Freitas; FLORES, Fábio Fernandes; ALMEIDA, Claudio Bispo de. Pressupostos para a elaboração de relato de experiência como conhecimento científico. Práxis Educacional, Vitória da Conquista, v. 17, n. 48, p. 60 -77, out. 2021. https://doi.org/10.22481/praxisedu.v17i48.9010.

NCTM - National Council of Teachers of Mathematics. Principles and standards for school mathematics. Reston: NCTM, 2000.

ONUCHIC, L. R.; ALLEVATO, N. S. G. Pesquisa em Resolução de Problemas: caminhos, avanços e novas perspectivas. Bolema: Boletim De Educação Matemática, Rio Claro, v. 25, n. 41, p. 73-98, 2011. Disponível em: http://www.redalyc.org/pdf/2912/291223514005.pdf. Acesso: 18 set. 2024.

PIRONEL, M.; ONUCHIC, L. d. l. R. Resolução de Problemas: Oportunidade de avaliação para a aprendizagem. In: ONUCHIC, L. de la R.; ALLEVATO, N. S. G.; NOGUTI, F. C. H.; JUSTULIN, A. M. (Org.). Resolução de problemas: teoria e prática. 2. ed. Jundiaí: Paco Editorial, 2021. p. 59-80.

PIRONEL, M.; VALLILO, S. A. M. O papel da Avaliação na Metodologia de Ensino-Aprendizagem-Avaliação de Matemática através da Resolução de Problemas. In: ONUCHIC, L. R.; LEAL JUNIOR, L. C.; PIRONEL, M. (Org.). Perspectivas para Resolução de Problemas. 1. ed. São Paulo, SP: Livraria da Física, 2017. p. 279-304.

PÓLYA, George. How to solve it: a new aspect of mathematical method. Princeton: Princeton University Press, 1945.

PRODANOV, C. C.; FREITAS, E. C. Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. 2. ed. Novo Hamburgo, RS: Editora Feevale, 2013.

PROENÇA, M. C. Resolução de Problemas: encaminhamentos para o ensino e a aprendizagem de Matemática em sala de aula. Maringá: Eduem, 2018.

SANTOS, E. V. Contribuições da resolução, exploração e proposição de problemas ao processo de ensino e aprendizagem da combinatória nos anos iniciais do ensino fundamental. 2019. 228 f. Dissertação (Mestrado em Ensino de Ciências e Educação Matemática) – Universidade Estadual da Paraíba, Campina Grande, 2019.

SCHROEDER, Thomas L.; LESTER, Frank K. Jr. Developing understanding in mathematics via problem solving. In: SILVER, Edward A. (Ed.). Teaching and learning mathematical problem solving: multiple research perspectives. Hillsdale: Lawrence Erlbaum Associates, 1989. p. 31 - 50.

SILVEIRA, A. A.; ANDRADE, S. Ensino-Aprendizagem de Análise Combinatória via Exploração, Resolução e Proposição de Problemas no Ensino Médio. Revista de Educação Matemática, [s. l.], v. 17, p. e020017, 2020.https://doi.org/10.37001/remat25269062v17id259.

VAN DE WALLE, J. A. Matemática no Ensino Fundamental: Formação de Professores e Aplicação em Sala de Aula. 6. ed. Porto Alegre: Artmed, 2009.

Published

2025-09-12

How to Cite

SOUZA, B. V. de; HUANCA, R. . R. H. . Introducing Counting Concepts through Problem Solving: : A Teaching Experience with 8th Grade . Revista de Investigação e Divulgação em Educação Matemática , [S. l.], v. 9, n. 1, 2025. Disponível em: https://periodicos.ufjf.br/index.php/ridema/article/view/49398. Acesso em: 5 dec. 2025.

Issue

Section

III Simpósio de Resolução de Problemas na Educação Matemática