Estimación de la percepción de distancia durante la locomoción
DOI:
https://doi.org/10.34019/1982-1247.2020.v14.30415Palabras clave:
Percepción Visual, Percepción de distancia, Percepción espacial, PsicofísicaResumen
En este artículo de revisión abordamos el problema de la percepción de distancia durante la locomoción. La misma implica una construcción mental del entorno que nos rodea que debe ser realizada de una manera rápida y precisa, pues la información es crucial para poder interactuar correctamente con el ambiente y los objetos que se encuentran en él. En buena parte del tiempo nosotros y el mundo que nos rodea nos encontramos en un continuo movimiento relativo, por lo que nuestra experiencia perceptual estaría moldeada por las complejas interacciones entre la información provista por los sentidos y por la percepción del propio movimiento. El tratar de adquirir datos de la percepción de distancia con el observador en movimiento implica requerimientos diferentes a la situación cuando se encuentra estático. Ello lleva buscar soluciones y nuevas alternativas metodológicas. Esto es ejemplificado a partir de los trabajos experimentales realizados utilizando la cinta de correr como plataforma de investigación en campo abierto.
Descargas
Citas
Anstis, S. (1995). Aftereffects from jogging. Experimental Brain Research, 103(3), 476-478.
Asaf, D. A., Santillán, J. E., & Barraza, J. F. (2014). Visuo-Motor interaction in the estimation of distance : Athletes vs. No-Athletes. In A. Braidot, & A. Hadad (Eds.), VI Latin American Congress on Biomedical Engineering CLAIB 2014, IFMBE Proceedings 49 (pp. 265-268). Paraná, Argentina: Springer Switzerland. https://doi.org/10.1007/978-3-319-13117-7_69
Aznar-Casanova, J. A., Da-Silva, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2009). ¿Es el espacio visualmente percibido un espacio métrico? Estudios de Psicología, 30(3), 345-371.
Barlow, H. B., & Földiák, P. (1989). Adaptation and decorrelation in the cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 54-72). New York, NY: Addison-Wesley.
Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein, & S. J. Rogers (Eds.), Handbook of perception and cognition. Perception of Space and Motion. (Vol. 5, pp. 69-117). San Diego, CA: Academic Press.
Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: comparison of three psychophysical methods. The American Journal of Psychology, 98(1), 119-144. https://doi.org/10.2307/1422771
Da Silva, J. A., Aznar-Casanova, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2006). Acerca da métrica da percepção do espaço visual. Arquivos Brasileiros de Oftalmologia, 69(1), 127-135.
Doumen, M. J., Kappers, A. M., & Koenderink, J. J. (2006). Horizontal-vertical anisotropy in visual space. Acta Psychologica, 123(3), 219-239.
Durgin, F. H. (2009). When walking makes perception better. Current Directions in Psychological Science, 18(1), 43-47.
Durgin, F. H., & Gigone, K. (2007). Enhanced optic flow speed discrimination while walking: Contextual tuning of visual coding. Perception, 36(10), 1465-75.
Durgin, F. H., Pelah, A., Fox, L. F., Lewis, J., Kane, R., & Walley, K. A. (2005). Self-motion perception during locomotor recalibration: more than meets the eye. Journal of Experimental Psychology. Human Perception and Performance, 31(3), 398-419.
Eimer, M. (2004). Multisensory integration: How visual experience shapes spatial perception. Current Biology, 14(3), R115-R117. https://doi.org/10.1016/j.cub.2004.01.018.
Frenz, H., Lappe, M., Kolesnik, M., & Bührmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Transactions on Applied Perception (TAP), 4(1), 1-18.
Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.
Harris, L. R., Jenkin, M. R., Zikovitz, D., Redlick, F., Jaekl, P., Jasiobedzka, U. T., ... Allison, R. S. (2002). Simulating self-motion I: Cues for the perception of motion. Virtual Reality, 6(2), 75-85. https://doi.org/10.1007/s100550200008.
Howard, I. P., & Howard, A. (1994). Vection: the contributions of absolute and relative visual motion. Perception, 23(7), 745-751. https://doi.org/10.1068/2Fp230745.
Koenderink, J. J., & Doorn, A. J. V. (1976). The singularities of the visual mapping. Biological cybernetics, 24(1), 51-59.
Kong, P. W., Koh, T. M., Tan, W. C., & Wang, Y. S. (2012). Unmatched perception of speed when running overground and on a treadmill. Gait Posture, 36(1), 46-48.
Land, M. F. (2012). The operation of the visual system in relation to action. Current Biology, 22(18), R811-R817. https://doi.org/10.1016/j.cub.2012.06.049
Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 295-302. https://doi.org/10.1037/0096-1523.16.2.295
Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 906-921. https://doi.org/10.1037/0096-1523.18.4.906
Loomis, J. M. (2003). Visual space perception: phenomenology and function. Arquivos Brasileiros de Oftalmologia, 66(5), 26-29. http://dx.doi.org/10.1590/S0004-27492003000600004
Norman, J. F., Crabtree, C. E., Clayton, A. M., & Norman, H. F. (2005). The perception of distances and spatial relationships in natural outdoor environments. Perception, 34(11), 1315-1324. https://doi.org/10.1068/p5304
Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. Psychological Science, 14(2), 106-112.
Santillán, J. E. (2009). A estrutura do espaço visual e a percepção de colinearidade no campo aberto: análise de procedimentos, teste de modelos e aspectos cognitivos (PhD Thesis). Universidade de São Paulo, Ribeirão Preto, SP.
Santillán, J. E., Barraza, J. F., & Asaf, D. A. (2018). Estimación de distancia egocéntrica en movimiento: comparación de dos métodos psicofísicos. Anales AFA, 29(Espec), 20-24. https://doi.org/10.31527/analesafa.2018.inVisionT.20
Santillán, J. E., & Barraza, J. F. (2019). Distance perception during self-movement. Human Movement Science, 67(1), 102496. https://doi.org/10.1016/j.humov.2019.102496
Stefanucci, J., Proffitt, D., Banton, T., & Epstein, W. (2005). Distances appear different on hills. Attention, Perception & Psychophysics, 67(6), 1052-1060.
Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology. Human Perception and Performance, 21(3), 480-497. https://doi.org/10.1037//0096-1523.21.3.480
Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: older adults perceive walkable extents as farther. Experimental Brain Research, 226(3), 383-391. https://doi.org/10.1007/s00221-013-3447-y
Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It’s what you weigh, not what you think. Acta Psychologica, 165, 1-8. https://doi.org/10.1016/j.actpsy.2016.01.012
Warren, R. (1982). Optical transformation during movement: Review of the optical concomitants of egomotion (AFOSR-TR-82-1028). Columbus, OH: Ohio State University Research Foundation.
Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201-206. https://doi.org/10.1177/0963721411408770
Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-R732. https://doi.org/10.1016/S0960-9822(01)00432-8.
Yabe, Y., & Taga, G. (2008). Treadmill locomotion captures visual perception of apparent motion. Experimental brain research, 191(4), 487-494. https://doi.org/10.1007/s00221-008-1541-3
Yabe, Y., Watanabe, H., & Taga, G. (2011). Treadmill experience alters treadmill effects on perceived visual motion. PloS ONE, 6(7), e21642. https://doi.org/10.1371/journal.pone.0021642