Distance perception estimation during locomotion

Authors

DOI:

https://doi.org/10.34019/1982-1247.2020.v14.30415

Keywords:

Visual perception, Distance perception, Space perception, Psychophysics

Abstract

In this review article we address the problem of distance perception during locomotion. It implies a mental construction of the environment that surrounds us that must be carried out in a fast and precise way, since this information is crucial to be able to correctly interact with the environment and the objects in it. In much of the time we and the world around us are in a continuous relative movement, so our perceptual experience would be shaped by the complex interactions between the information provided by the senses and by the perception of our movement itself. Trying to acquire distance perception data with the observer in motion implies different requirements to the situation when it is static. This leads to seeking solutions and new methodological alternatives. This is exemplified from the experimental work carried out using the treadmill as a research platform in the open field.

Downloads

Download data is not yet available.

Author Biography

Javier Enrique Santillán, Universidad Nacional de Tucumán

Prof. Dr. Javier E. Santillán

Has a degree in Psychology, a Master in Visual Perception and a Specialization in Visual Environment and Efficient Lighting from the National University of Tucumán (Argentina). He is doctor in Psychobiology from the University of Sao Paulo (USP), Ribeirão Preto (Brazil).

He is currently Professor of the Department of Lighting, Light and Vision of the Faculty of Exact Sciences and Technology of the National University of Tucumán, serving as Director of the "Lighting Design" Degree and Vice-Director of the International Specialization in Visual Environment and Efficient Lighting (MAVILE). He is a researcher at the Institute for Research in Light, Environment and Vision (ILAV) of the Council for Scientific and Technical Research (CONICET) working in the Laboratory of Basic and Applied Vision. He is a member of the Board of Directors of the recently formed Technological Development Laboratory (D-TEC) and of the Science and Technology Council of the Faculty of Exact Sciences and Technology.

He teaches the subjects "Visual Perception" and "Visual and Non-Visual Effects of Lighting" in the Degree Course in Lighting Design, as well as the Postgraduate Courses in "Human Factors in Lighting" in the Doctorate in Visual Environment and Efficient lighting.

His area of interest is the application of Psychobiology in Lighting Design, acting mainly on the following topics: perceptual and motor processes, human factors in lighting, methodology, instrumentation and equipment for the evaluation of perception and illuminated space .

References

Anstis, S. (1995). Aftereffects from jogging. Experimental Brain Research, 103(3), 476-478.

Asaf, D. A., Santillán, J. E., & Barraza, J. F. (2014). Visuo-Motor interaction in the estimation of distance : Athletes vs. No-Athletes. In A. Braidot, & A. Hadad (Eds.), VI Latin American Congress on Biomedical Engineering CLAIB 2014, IFMBE Proceedings 49 (pp. 265-268). Paraná, Argentina: Springer Switzerland. https://doi.org/10.1007/978-3-319-13117-7_69

Aznar-Casanova, J. A., Da-Silva, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2009). ¿Es el espacio visualmente percibido un espacio métrico? Estudios de Psicología, 30(3), 345-371.

Barlow, H. B., & Földiák, P. (1989). Adaptation and decorrelation in the cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 54-72). New York, NY: Addison-Wesley.

Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein, & S. J. Rogers (Eds.), Handbook of perception and cognition. Perception of Space and Motion. (Vol. 5, pp. 69-117). San Diego, CA: Academic Press.

Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: comparison of three psychophysical methods. The American Journal of Psychology, 98(1), 119-144. https://doi.org/10.2307/1422771

Da Silva, J. A., Aznar-Casanova, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2006). Acerca da métrica da percepção do espaço visual. Arquivos Brasileiros de Oftalmologia, 69(1), 127-135.

Doumen, M. J., Kappers, A. M., & Koenderink, J. J. (2006). Horizontal-vertical anisotropy in visual space. Acta Psychologica, 123(3), 219-239.

Durgin, F. H. (2009). When walking makes perception better. Current Directions in Psychological Science, 18(1), 43-47.

Durgin, F. H., & Gigone, K. (2007). Enhanced optic flow speed discrimination while walking: Contextual tuning of visual coding. Perception, 36(10), 1465-75.

Durgin, F. H., Pelah, A., Fox, L. F., Lewis, J., Kane, R., & Walley, K. A. (2005). Self-motion perception during locomotor recalibration: more than meets the eye. Journal of Experimental Psychology. Human Perception and Performance, 31(3), 398-419.

Eimer, M. (2004). Multisensory integration: How visual experience shapes spatial perception. Current Biology, 14(3), R115-R117. https://doi.org/10.1016/j.cub.2004.01.018.

Frenz, H., Lappe, M., Kolesnik, M., & Bührmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Transactions on Applied Perception (TAP), 4(1), 1-18.

Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.

Harris, L. R., Jenkin, M. R., Zikovitz, D., Redlick, F., Jaekl, P., Jasiobedzka, U. T., ... Allison, R. S. (2002). Simulating self-motion I: Cues for the perception of motion. Virtual Reality, 6(2), 75-85. https://doi.org/10.1007/s100550200008.

Howard, I. P., & Howard, A. (1994). Vection: the contributions of absolute and relative visual motion. Perception, 23(7), 745-751. https://doi.org/10.1068/2Fp230745.

Koenderink, J. J., & Doorn, A. J. V. (1976). The singularities of the visual mapping. Biological cybernetics, 24(1), 51-59.

Kong, P. W., Koh, T. M., Tan, W. C., & Wang, Y. S. (2012). Unmatched perception of speed when running overground and on a treadmill. Gait Posture, 36(1), 46-48.

Land, M. F. (2012). The operation of the visual system in relation to action. Current Biology, 22(18), R811-R817. https://doi.org/10.1016/j.cub.2012.06.049

Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 295-302. https://doi.org/10.1037/0096-1523.16.2.295

Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 906-921. https://doi.org/10.1037/0096-1523.18.4.906

Loomis, J. M. (2003). Visual space perception: phenomenology and function. Arquivos Brasileiros de Oftalmologia, 66(5), 26-29. http://dx.doi.org/10.1590/S0004-27492003000600004

Norman, J. F., Crabtree, C. E., Clayton, A. M., & Norman, H. F. (2005). The perception of distances and spatial relationships in natural outdoor environments. Perception, 34(11), 1315-1324. https://doi.org/10.1068/p5304

Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. Psychological Science, 14(2), 106-112.

Santillán, J. E. (2009). A estrutura do espaço visual e a percepção de colinearidade no campo aberto: análise de procedimentos, teste de modelos e aspectos cognitivos (PhD Thesis). Universidade de São Paulo, Ribeirão Preto, SP.

Santillán, J. E., Barraza, J. F., & Asaf, D. A. (2018). Estimación de distancia egocéntrica en movimiento: comparación de dos métodos psicofísicos. Anales AFA, 29(Espec), 20-24. https://doi.org/10.31527/analesafa.2018.inVisionT.20

Santillán, J. E., & Barraza, J. F. (2019). Distance perception during self-movement. Human Movement Science, 67(1), 102496. https://doi.org/10.1016/j.humov.2019.102496

Stefanucci, J., Proffitt, D., Banton, T., & Epstein, W. (2005). Distances appear different on hills. Attention, Perception & Psychophysics, 67(6), 1052-1060.

Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology. Human Perception and Performance, 21(3), 480-497. https://doi.org/10.1037//0096-1523.21.3.480

Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: older adults perceive walkable extents as farther. Experimental Brain Research, 226(3), 383-391. https://doi.org/10.1007/s00221-013-3447-y

Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It’s what you weigh, not what you think. Acta Psychologica, 165, 1-8. https://doi.org/10.1016/j.actpsy.2016.01.012

Warren, R. (1982). Optical transformation during movement: Review of the optical concomitants of egomotion (AFOSR-TR-82-1028). Columbus, OH: Ohio State University Research Foundation.

Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201-206. https://doi.org/10.1177/0963721411408770

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-R732. https://doi.org/10.1016/S0960-9822(01)00432-8.

Yabe, Y., & Taga, G. (2008). Treadmill locomotion captures visual perception of apparent motion. Experimental brain research, 191(4), 487-494. https://doi.org/10.1007/s00221-008-1541-3

Yabe, Y., Watanabe, H., & Taga, G. (2011). Treadmill experience alters treadmill effects on perceived visual motion. PloS ONE, 6(7), e21642. https://doi.org/10.1371/journal.pone.0021642

Published

2020-10-04

Issue

Section

Número Temático: Cérebro & Mente: Interações