Estimación de la percepción de distancia durante la locomoción

Autores

DOI:

https://doi.org/10.34019/1982-1247.2020.v14.30415

Palavras-chave:

Percepção visual, Percepção de distância, Percepção do espaço, Psicofísica

Resumo

Neste artigo de revisão, abordamos o problema da percepção da distância durante a locomoção. Isto implica uma construção mental do ambiente que nos rodeia, que deve ser realizada de maneira rápida e precisa, pois a informação é crucial para poder interagir corretamente com o ambiente e com os objetos encontrados nele. Na maior parte do tempo, nós e o mundo à nossa volta estamos em um movimento relativo contínuo, sendo nossa experiência perceptiva moldada pelas complexas interações entre as informações fornecidas pelos sentidos e pela percepção do próprio movimento. Tentar adquirir dados de percepção de distância com o observador em movimento implica requisitos diferentes para a situação quando ela é estática. Isso leva à busca de soluções e novas alternativas metodológicas. Isso é exemplificado pelo trabalho experimental realizado com a esteira como plataforma de pesquisa em campo aberto.

Downloads

Não há dados estatísticos.

Biografia do Autor

Javier Enrique Santillán, Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Prof. Dr. Javier E. Santillán

Possui Graduação em Psicologia, Mestrado em Percepção Visual e Especialização em Iluminação e Visão pela Universidade Nacional de Tucumán (Argentina). É doutor em Psicobiologia pela Universidade de São Paulo (Ribeirão Preto), Brasil.

Atualmente é Professor do Departamento de Luminotecnia, Luz y Visão da Faculdade de Ciências Exatas y Tecnologia da Universidade Nacional de Tucumán, sendo Diretor da carreira de “Desenhador de Iluminação” e Vice-Diretor da “Especialização Internacional em Meio Ambiente Visual e Iluminação Eficiente” (MAVILE). É pesquisador do Instituto de Investigação em Luz, Ambiente e Visão (ILAV) do Conselho Nacional de Investigações Científicas e Técnicas (CONICET) trabalhando no laboratório de Visão Básica e Aplicada. É membro do Conselho Diretivo do recentemente formado Laboratório de Desarrolho tecnológico (D-TEC) e do Conselho de Ciências e Técnica da Faculdade de Ciências Exatas y Tecnologia.

Ministra as disciplinas de “Percepção Visual” e “Efeitos visuais e no-visuais da iluminação”, assim como os cursos de pós-graduação em “Fatores Humanos na iluminação” no Doutorado em Meio Ambiente Visual e Iluminação Eficiente.

Sua área de interesse é a aplicação da Psicobiologia no Desenho da Iluminação, atuando principalmente nos seguintes temas: processos perceptuais e motores, fatores humanos na iluminação, metodologia, instrumentação e equipamento para avaliação da percepção e do espaço iluminado.



Referências

Anstis, S. (1995). Aftereffects from jogging. Experimental Brain Research, 103(3), 476-478.

Asaf, D. A., Santillán, J. E., & Barraza, J. F. (2014). Visuo-Motor interaction in the estimation of distance : Athletes vs. No-Athletes. In A. Braidot, & A. Hadad (Eds.), VI Latin American Congress on Biomedical Engineering CLAIB 2014, IFMBE Proceedings 49 (pp. 265-268). Paraná, Argentina: Springer Switzerland. https://doi.org/10.1007/978-3-319-13117-7_69

Aznar-Casanova, J. A., Da-Silva, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2009). ¿Es el espacio visualmente percibido un espacio métrico? Estudios de Psicología, 30(3), 345-371.

Barlow, H. B., & Földiák, P. (1989). Adaptation and decorrelation in the cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 54-72). New York, NY: Addison-Wesley.

Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein, & S. J. Rogers (Eds.), Handbook of perception and cognition. Perception of Space and Motion. (Vol. 5, pp. 69-117). San Diego, CA: Academic Press.

Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: comparison of three psychophysical methods. The American Journal of Psychology, 98(1), 119-144. https://doi.org/10.2307/1422771

Da Silva, J. A., Aznar-Casanova, J. A., Ribeiro-Filho, N. P., & Santillán, J. E. (2006). Acerca da métrica da percepção do espaço visual. Arquivos Brasileiros de Oftalmologia, 69(1), 127-135.

Doumen, M. J., Kappers, A. M., & Koenderink, J. J. (2006). Horizontal-vertical anisotropy in visual space. Acta Psychologica, 123(3), 219-239.

Durgin, F. H. (2009). When walking makes perception better. Current Directions in Psychological Science, 18(1), 43-47.

Durgin, F. H., & Gigone, K. (2007). Enhanced optic flow speed discrimination while walking: Contextual tuning of visual coding. Perception, 36(10), 1465-75.

Durgin, F. H., Pelah, A., Fox, L. F., Lewis, J., Kane, R., & Walley, K. A. (2005). Self-motion perception during locomotor recalibration: more than meets the eye. Journal of Experimental Psychology. Human Perception and Performance, 31(3), 398-419.

Eimer, M. (2004). Multisensory integration: How visual experience shapes spatial perception. Current Biology, 14(3), R115-R117. https://doi.org/10.1016/j.cub.2004.01.018.

Frenz, H., Lappe, M., Kolesnik, M., & Bührmann, T. (2007). Estimation of travel distance from visual motion in virtual environments. ACM Transactions on Applied Perception (TAP), 4(1), 1-18.

Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.

Harris, L. R., Jenkin, M. R., Zikovitz, D., Redlick, F., Jaekl, P., Jasiobedzka, U. T., ... Allison, R. S. (2002). Simulating self-motion I: Cues for the perception of motion. Virtual Reality, 6(2), 75-85. https://doi.org/10.1007/s100550200008.

Howard, I. P., & Howard, A. (1994). Vection: the contributions of absolute and relative visual motion. Perception, 23(7), 745-751. https://doi.org/10.1068/2Fp230745.

Koenderink, J. J., & Doorn, A. J. V. (1976). The singularities of the visual mapping. Biological cybernetics, 24(1), 51-59.

Kong, P. W., Koh, T. M., Tan, W. C., & Wang, Y. S. (2012). Unmatched perception of speed when running overground and on a treadmill. Gait Posture, 36(1), 46-48.

Land, M. F. (2012). The operation of the visual system in relation to action. Current Biology, 22(18), R811-R817. https://doi.org/10.1016/j.cub.2012.06.049

Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 295-302. https://doi.org/10.1037/0096-1523.16.2.295

Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 906-921. https://doi.org/10.1037/0096-1523.18.4.906

Loomis, J. M. (2003). Visual space perception: phenomenology and function. Arquivos Brasileiros de Oftalmologia, 66(5), 26-29. http://dx.doi.org/10.1590/S0004-27492003000600004

Norman, J. F., Crabtree, C. E., Clayton, A. M., & Norman, H. F. (2005). The perception of distances and spatial relationships in natural outdoor environments. Perception, 34(11), 1315-1324. https://doi.org/10.1068/p5304

Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. Psychological Science, 14(2), 106-112.

Santillán, J. E. (2009). A estrutura do espaço visual e a percepção de colinearidade no campo aberto: análise de procedimentos, teste de modelos e aspectos cognitivos (PhD Thesis). Universidade de São Paulo, Ribeirão Preto, SP.

Santillán, J. E., Barraza, J. F., & Asaf, D. A. (2018). Estimación de distancia egocéntrica en movimiento: comparación de dos métodos psicofísicos. Anales AFA, 29(Espec), 20-24. https://doi.org/10.31527/analesafa.2018.inVisionT.20

Santillán, J. E., & Barraza, J. F. (2019). Distance perception during self-movement. Human Movement Science, 67(1), 102496. https://doi.org/10.1016/j.humov.2019.102496

Stefanucci, J., Proffitt, D., Banton, T., & Epstein, W. (2005). Distances appear different on hills. Attention, Perception & Psychophysics, 67(6), 1052-1060.

Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology. Human Perception and Performance, 21(3), 480-497. https://doi.org/10.1037//0096-1523.21.3.480

Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: older adults perceive walkable extents as farther. Experimental Brain Research, 226(3), 383-391. https://doi.org/10.1007/s00221-013-3447-y

Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It’s what you weigh, not what you think. Acta Psychologica, 165, 1-8. https://doi.org/10.1016/j.actpsy.2016.01.012

Warren, R. (1982). Optical transformation during movement: Review of the optical concomitants of egomotion (AFOSR-TR-82-1028). Columbus, OH: Ohio State University Research Foundation.

Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201-206. https://doi.org/10.1177/0963721411408770

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-R732. https://doi.org/10.1016/S0960-9822(01)00432-8.

Yabe, Y., & Taga, G. (2008). Treadmill locomotion captures visual perception of apparent motion. Experimental brain research, 191(4), 487-494. https://doi.org/10.1007/s00221-008-1541-3

Yabe, Y., Watanabe, H., & Taga, G. (2011). Treadmill experience alters treadmill effects on perceived visual motion. PloS ONE, 6(7), e21642. https://doi.org/10.1371/journal.pone.0021642

Publicado

2020-10-04

Edição

Seção

Número Temático: Cérebro & Mente: Interações