Estadísticas de los colores en las obras de arte y la hipótesis de la naturalidade

Autores/as

DOI:

https://doi.org/10.34019/1982-1247.2024.v1.37753

Palabras clave:

visión del color, estadísticas de color, preferencia estética, naturalidad, Artes visuales

Resumen

Los avances en diferentes modelos matemáticos permiten la medición de diversos atributos visuales, incluidas fotografías de paisajes y pinturas de diferentes épocas y estilos. Los resultados indican que los artistas utilizan una composición similar a los naturales. Revisamos una serie de experimentos que utilizaron métodos psicofísicos para medir la preferencia por diferentes composiciones colorimétricas de pinturas. Los resultados están de acuerdo con la hipótesis de la codificación eficiente, en la que se supone que los estímulos más comunes del sistema sensorial se procesan de manera más eficiente.

Esta revisión pretende ser un estudio científico capaz de comprender la colorida complejidad relacionada con la preferencia, y proponer una experiencia consolidada unificada de creación de estudios de una escalada de análisis estético.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albers, A. M., Gegenfurtner, K. R., & Nascimento, S. M. (2020). An independent contribution of colour to the aesthetic preference for paintings. Vision Research, 177, 109–117. https://doi.org/10.1016/j.visres.2020.08.005

Artusi, A., Mantiuk, R. K., Richter, T., Hanhart, P., Korshunov, P., Agostinelli, M., Ten, A., & Ebrahimi, T. (2019). Overview and evaluation of the JPEG XT HDR image compression standard. Journal of Real-Time Image Processing, 16(2), 413–428. https://doi.org/10.1007/s11554-015-0547-x

Fairchild, M. D. (2013). Color appearance models (3rd ed.). Wiley.

Fairchild, M. D. (2019). CIE 015:2018 Colorimetry, 4th Edition. The International Commission on Illumination, Vienna, Austria, 2019. 111 pp. €162.00 Members of CIE country bodies pay €54.00; hardcover or e‐book. Color Research & Application, 44(4), 674–675. https://doi.org/10.1002/col.22387

Feitosa-Santana, C., Gaddi, C. M., Gomes, A. E., & Nascimento, S. M. C. (2020). Art through the colors of graffiti: From the perspective of the chromatic structure. Sensors, 20(9), 2531. https://doi.org/10.3390/s20092531

Feitosa-Santana, C., Oiwa, N. N., Costa, M. F. D., Tiedemann, K. B., Silveira, L. C. D. L., & Ventura, D. F. (2006). Espaço de cores. Psicologia USP, 17(4), 35–62. https://doi.org/10.1590/s0103-65642006000400003

Foster, D. H., & Amano, K. (2019). Hyperspectral imaging in color vision research: Tutorial. Journal of the Optical Society of America A, 36(4), 606. https://doi.org/10.1364/josaa.36.000606

Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual Review of Psychology, 59(1), 167–192. https://doi.org/10.1146/annurev.psych.58.110405.085632

Graham, D. J., & Redies, C. (2010). Statistical regularities in art: Relations with visual coding and perception. Vision Research, 50(16), 1503–1509. https://doi.org/10.1016/j.visres.2010.05.002

Kim, D., Son, S. W., & Jeong, H. (2014). Large-scale quantitative analysis of painting arts. Scientific Reports, 4(1), 1-7. https://doi.org/10.1038/srep07370

Linhares, J. M. M., Pinto, P. D., & Nascimento, S. M. C. (2008). The number of discernible colors in natural scenes. Journal of the Optical Society of America A, 25(12), 2918–2924. https://doi.org/10.1364/josaa.25.002918

Linhares, J., Cardeira, L., Bailão, A., Pastilha, R., & Nascimento, S. (2020). Chromatic changes in paintings of Adriano de Sousa Lopes after the removal of aged varnish. Conservar Património, 34, 50–64. https://doi.org/10.14568/cp2018064

Mallon, B., Redies, C., & Hayn-Leichsenring, G. U. (2014). Beauty in abstract paintings: Perceptual contrast and statistical properties. Frontiers in Human Neuroscience, 8(161), 1–14. https://doi.org/10.3389/fnhum.2014.00161

Montagner, C., Linhares, J. M. M., Vilarigues, M., & Nascimento, S. M. C. (2016). Statistics of colors in paintings and natural scenes. Journal of the Optical Society of America A, 33(3), A170. https://doi.org/10.1364/josaa.33.00a170

Montagner, C., Linhares, J. M., Vilarigues, M., Melo, M. J., & Nascimento, S. M. (2017). Supporting history of art with colorimetry: The paintings of Amadeo de Souza-Cardoso. Color Research & Application, 43(3), 304–310. https://doi.org/10.1002/col.22189

Nascimento, S. M. C., Herdeiro, C. F. M., Gomes, A. E., Linhares, J. M. M., Kondo, T., & Nakauchi, S. (2020). The best CCT for appreciation of paintings under daylight illuminants is different for occidental and oriental viewers. LEUKOS, 17(3), 310–318. https://doi.org/10.1080/15502724.2020.1761828

Nascimento, S. M., Linhares, J. M., Montagner, C., João, C. A., Amano, K., Alfaro, C., & Bailão, A. (2017). The colors of paintings and viewers’ preferences. Vision Research, 130, 76–84. https://doi.org/10.1016/j.visres.2016.11.006

Nascimento, S. M., Marit Albers, A., & Gegenfurtner, K. R. (2021). Naturalness and aesthetics of colors – Preference for color compositions perceived as natural. Vision Research, 185, 98–110. https://doi.org/10.1016/j.visres.2021.03.010

Ogawa, N., & Motoyoshi, I. (2020). Differential effects of orientation and spatial-frequency spectra on visual unpleasantness. Frontiers in Psychology, 11, e1342. https://doi.org/10.3389/fpsyg.2020.01342

Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64(1), 77–107. https://doi.org/10.1146/annurev-psych-120710-100504

Pastilha, R. C., Linhares, J. M., Gomes, A. E., Santos, J. L., de Almeida, V. M., & Nascimento, S. M. (2019). The colors of natural scenes benefit dichromats. Vision Research, 158, 40-48. https://doi.org/10.1016/j.visres.2019.02.003

Penacchio, O., & Wilkins, A. J. (2015). Visual discomfort and the spatial distribution of Fourier energy. Vision Research, 108, 1–7. https://doi.org/10.1016/j.visres.2014.12.013

Penacchio, O., Haigh, S. M., Ross, X., Ferguson, R., & Wilkins, A. J. (2021). Visual discomfort and variations in chromaticity in art and nature. Frontiers in Neuroscience, 15, e711064. https://doi.org/10.3389/fnins.2021.711064

Picollo, M., Cucci, C., Casini, A., & Stefani, L. (2020). Hyper-spectral imaging technique in the cultural heritage field: New possible scenarios. Sensors, 20(10), 2843. https://doi.org/10.3390/s20102843

Redies, C. (2008). A universal model of esthetic perception based on the sensory coding of natural stimuli. Spatial Vision, 21(1–2), 97–117. https://doi.org/10.1163/156856807782753886

Romero, J., Gómez-Robledo, L., & Nieves, J. (2018). Computational color analysis of paintings for different artists of the XVI and XVII centuries. Color Research & Application, 43(3), 296–303. https://doi.org/10.1002/col.22211

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193

Witzel, C., & Gegenfurtner, K. R. (2018). Color perception: Objects, constancy, and categories. Annual Review of Vision Science, 4(1), 475–499. https://doi.org/10.1146/annurev-vision-091517-034231

Wuerger, S., & Xiao, K. (2016). Color vision, opponent theory. In M. R. Luo. (Ed.) Encyclopedia of color science and technology (pp. 413-418). New York. https://doi.org/10.1007/978-1-4419-8071-7_92

Publicado

2023-11-08