Efecto de la carga de memoria de trabajo en la tarea táctil n-back
DOI:
https://doi.org/10.34019/1982-1247.2020.v14.30409Resumen
El presente estudio investigó las características de la memoria táctil de trabajo utilizando la Tarea N-Back. Los participantes (n = 16), todos videntes, realizaron la tarea con cargas equivalentes a una, dos o tres letras en la memoria de trabajo (N-Back 1, N-Back 2 y N-Back 3). Los errores de comisión y omisión se analizó de acuerdo con la carga de trabajo. Los resultados indican un aumento en la frecuencia de errores de omisión debido a este factor. Las comisiones no fueron influenciadas significativamente por la carga de memoria de trabajo. En general, nuestros resultados sugieren que la tarea N-Back táctil puede representar un método prometedor para la evaluación de la memoria de trabajo en participantes videntes y no videntes.
Descargas
Citas
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1-29. doi.org/10.1146/annurev-psych-120710-100422
Bliss, I., & Hämäläinen, H. (2005). Different working memory capacity in normal young adults for visual and tactile letter recognition task. Scandinavian Journal of Psychology, 46(3), 247-251. doi.org/10.1111/j.1467-9450.2005.00454.x
Degenaar, M., & Lokhorst, G. (2017). "Molyneux's Problem", The Stanford Encyclopedia of Philosophy (Winter 2017 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2017/entries/molyneux-problem/>.
Deibert, E., Kraut, M., Kremen, S., & Hart, J. (1999). Neural pathways in tactile object recognition. Neurology, 52(7), 1413-1413. doi.org/10.1212/WNL.52.7.1413
Fernandes, A. M., & Albuquerque, P. B. (2012). Tactual perception: a review of experimental variables and procedures. Cognitive Processing, 13(4), 285-301. doi.org/10.1007/s10339-012-0443-2
Gallace, A., & Spence, C. (2009). The cognitive and neural correlates of tactile memory. Psychological Bulletin, 135(3), 380. doi.org/10.1037/a0015325
Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69(6), 477- 491. doi.org/10.1037/h0046962
Loomis, J. M., & Lederman, S. J. (1986). Tactual perception. In: K. R. Boff, L. Kaufman & J. P. Thomas (Eds.), Handbook of Perception and Human Performances, Vol. 2 (pp. 31/1–31/41). New York, NY: Wiley.
Loomis, J. M., Klatzky, R. L., & Lederman, S. J. (1991). Similarity of tactual and visual picture recognition with limited field of view. Perception, 20(2), 167-177. doi.org/10.1068/p200167
Meule, A. (2017). Reporting and interpreting working memory performance in n-back tasks. Frontiers in psychology, 8, 352. doi: 10.3389/fpsyg.2017.00352
Masson, H. L., Bulthé, J., De Beeck, H. P. O., & Wallraven, C. (2016). Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences. Cerebral Cortex, 26(8), 3402-3412. doi.org/10.1093/cercor/bhv170
Penha, M. R., Garcia, R. B., Douchkin, I. O., & Da Silva, J. A. (2014). Precisão, sensibilidade e confiança na percepção háptica de peso na presença ou ausência de movimento e visão. Estudos de Psicologia, 19(4), 268-277. doi.org/10.1590/S1413294X2014000400004
Picard, D., & Monnier, C. (2009). Short-term memory for spatial configurations in the tactile modality: A comparison with vision. Memory, 17(8), 789-801. doi.org/10.1080/09658210903107838
Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139(1), 339-349. doi.org/10.1016/j.neuroscience.2005.08.045
Sacks, O. (1993). To see and not see. The New Yorker, May 10, 59-73.
Snow, J. C., Strother, L., & Humphreys, G. W. (2014). Haptic shape processing in visual cortex. Journal of Cognitive Neuroscience, 26(5), 1154-1167. doi.org/10.1162/jocn_a_00548
Yaple, Z. A., Stevens, W. D., & Arsalidou, M. (2019). Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 196, 16-31. doi.org/10.1016/j.neuroimage.2019.03.074