Sonido que se acerca
Efectos sobre la atención
DOI:
https://doi.org/10.34019/1982-1247.2020.v14.30239Palabras clave:
Sonido que se acerca, Señal-clave Sonora, AtenciónResumen
Estudios sugieren dar prioridad al procesamiento neural de sonidos que se mueven aproximándose. Un aspecto poco explorado es la relación entre ese y las redes de la atención. El presente estudio investigó el efecto de una señal previa sonora de alerta, en la rapidez de respuesta a un objetivo sonoro subsecuente (Exp. 1) y una posible influencia de ese tipo de señal previa en la orientación de la atención (Exp. 2). Los resultados sugieren una reducción significativa en el tiempo de reacción para un objetivo sonoro subsecuente, en función de la presentación (500 ms) de una señal previa sonora de alerta que se aproxima. No fue observado un efecto significativo de la señal previa en la orientación de la atención.
Descargas
Citas
Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology, 74(1), 28-33. https://doi.org/10.1016/j.ijpsycho.2009.06.004
Callejas, A., Lupianez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 27-37. https://doi.org/10.1007/s00221-005-2365-z
Card, G. M. (2012). Escape behaviors in insects. Current Opinion in Neurobiology, 22(2), 180-186. https://doi.org/10.1016/j.conb.2011.12.009
E-Prime (Version 2.0.10.248) [Computer software]. Pittsburgh, PA: Psychology Software Tools.
Ferri, F., Tajadura-Jiménez, A., Väljamäe, A., Vastano, R., & Costantini, M. (2015). Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia, 70, 468-475. https://doi.org/10.1016/j.neuropsychologia.2015.03.001
Fletcher, P. D., Nicholas, J. M., Shakespeare, T. J., Downey, L. E., Golden, H. L., Agustus, J. L., ... & Warren, J. D. (2015). Dementias show differential physiological responses to salient sounds. Frontiers in Behavioral Neuroscience, 9, 73. https://doi.org/10.3389/fnbeh.2015.00073
Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999-1010. https://doi.org/10.3758/BF03194829
Hall, D. A., & Moore, D. R. (2003). Auditory neuroscience: The salience of looming sounds. Current Biology, 13(3), R91-R93. https://doi.org/10.1016/S0960-9822(03)00034-4
Johnston, S. K., Hennessey, N. W., & Leitão, S. (2019). Determinants of assessing efficiency within auditory attention networks. The Journal of General Psychology, 146(2), 134-169. https://doi.org/10.1080/00221309.2018.1541861
Kim, N. G. (2015). Perceiving collision impacts in Alzheimer's disease: the effect of retinal eccentricity on optic flow deficits. Frontiers in Aging Neuroscience, 7, 218. https://doi.org/10.3389/fnagi.2015.00218
Maier, J. X., & Ghazanfar, A. A. (2007). Looming biases in monkey auditory cortex. Journal of Neuroscience, 27(15), 4093-4100. https://doi.org/10.1523/JNEUROSCI.0330-07.2007
Maier, J. X., Neuhoff, J. G., Logothetis, N. K., & Ghazanfar, A. A. (2004). Multisensory integration of looming signals by rhesus monkeys. Neuron, 43(2), 177-181. https://doi.org/10.1016/j.neuron.2004.06.027
McCarthy, L., & Olsen, K. N. (2017). A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization. Attention, Perception, & Psychophysics, 79(1), 352-362. https://doi.org/10.3758/s13414-016-1201-1209
McDonald, J. J., & Ward, L. M. (1999). Spatial relevance determines facilitatory and inhibitory effects of auditory covert spatial orienting. Journal of Experimental Psychology: Human Perception and Performance, 25(5), 1234-1252. https://doi.org/10.1037/0096-1523.25.5.1234
Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123-124. https://doi.org/10.1038/25862
Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 13(2), 87-110. https://doi.org/10.1207/S15326969ECO1302_2
Neuhoff, J. G. (2016). Looming sounds are perceived as faster than receding sounds. Cognitive Research: Principles and Implications, 1(1), 15. https://doi.org/10.1186/s41235-016-0017-4
Neuhoff, J. G. (2018). Adaptive biases in visual and auditory looming perception. Spatial Biases in Perception and Cognition, 180-190. https://doi.org/10.1017/9781316651247.013
Orioli, G., Bremner, A. J., & Farroni, T. (2018). Multisensory perception of looming and receding objects in human newborns. Current Biology, 28(22), R1294-R1295. https://doi.org/10.1016/j.cub.2018.10.004
Pacheco-Unguetti, A. P., Acosta, A., Marqués, E., & Lupiáñez, J. (2011). Alterations of the attentional networks in patients with anxiety disorders. Journal of anxiety disorders, 25(7), 888-895. https://doi.org/10.1016/j.janxdis.2011.04.010
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160. https://doi.org/10.1037/0096-3445.109.2.160
Posner, M. I. (2016). Orienting of attention: Then and now. The Quarterly Journal of Experimental Psychology, 69(10), 1864-1875. https://doi.org/10.1080/17470218.2014.937446
Riskind, J. H., Kleiman, E. M., Seifritz, E., & Neuhoff, J. (2014). Influence of anxiety, depression and looming cognitive style on auditory looming perception. Journal of Anxiety Disorders, 28(1), 45-50. https://doi.org/10.1016/j.janxdis.2013.11.005
Roberts, K. L., Summerfield, A. Q., & Hall, D. A. (2006). Presentation modality influences behavioral measures of alerting, orienting, and executive control. Journal of the International Neuropsychological Society, 12(4), 485-492. https://doi.org/10.1017/S1355617706060620
Sato, K., & Yamawaki, Y. (2014). Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia. Journal of Neurophysiology, 112(3), 671-682. https://doi.org/10.1152/jn.00049.2014
Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., ... & Di Salle, F. (2002). Neural processing of auditory looming in the human brain. Current Biology, 12(24), 2147-2151. https://doi.org/10.1016/S0960-9822(02)01356-8
Skarratt, P. A., Cole, G. G., & Gellatly, A. R. (2009). Prioritization of looming and receding objects: Equal slopes, different intercepts. Attention, Perception, & Psychophysics, 71(4), 964-970. https://doi.org/10.3758/APP.71.4.964
Skarratt, P. A., Gellatly, A. R., Cole, G. G., Pilling, M., & Hulleman, J. (2014). Looming motion primes the visuomotor system. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 566. https://doi.org/10.1037/a0034456
Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1), S76-S84. https://doi.org/10.1006/nimg.2001.0839
Tajadura-Jiménez, A., Väljamäe, A., Asutay, E., & Västfjäll, D. (2010). Embodied auditory perception: The emotional impact of approaching and receding sound sources. Emotion, 10(2), 216. https://doi.org/10.1037/a0018422
von Mühlenen, A., & Lleras, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1297. https://doi.org/10.1037/0096-1523.33.6.1297
Wu, C. T., Weissman, D. H., Roberts, K. C., & Woldorff, M. G. (2007). The neural circuitry underlying the executive control of auditory spatial attention. Brain Research, 1134, 187-198. https://doi.org/10.1016/j.brainres.2006.11.088
Yilmaz, M., & Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 2011-2015. https://doi.org/10.1016/j.cub.2013.08.015