Neuropsychobiological models for the study of pain and emotions

Authors

DOI:

https://doi.org/10.34019/1982-1247.2020.v14.30596

Keywords:

Animal models, Pain, Comorbid, Anxiety, Depression

Abstract

Pain is a personal and subjective experience that can only be felt by the sufferer. Acute pain is intended to warn the individual that something is wrong. However, chronic pain (CP) is a global health problem, affecting the quality of life and making the individual parts or disabled. Basic research uses several animal models for the study of acute or chronic pain, as well as for the study of the main comorbidities arising from their chronicity, such as anxiety and depression. This review focuses on the animal models most commonly used in this context

Downloads

Download data is not yet available.

References

Cathomas, F., Hartmann, M. N., Seifritz, E., Pryce, C. R., & Kaiser, S. (2015) The translational study of apathy—An ecological approach. Frontiers Research Foundation. doi:10.3389/fnbeh.2015.00241
Crawley, J., & Goodwin, F. K. (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13, 167-170. doi: 10.1016/0091-3057(80)90067-2
Cryan, J. F., Hoyer, D., & Markou, A. (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54, 49–58. doi:10.1016/s0006-3223(02)01730-4
Cryan, J. F., & Sweeney, F., F. (2011) The age of anxiety: Role of animal models of anxiolytic action in drug discovery, John Wiley and Sons Inc. doi: 10.1111/j.1476-5381.2011.01362.x
File, S. E., & Hyde, J. R. G. (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62, 19–24. doi: 10.1111/j.1476-5381.1978.tb07001.x
File, S. E., & Wardill, A. G. (1975) Validity of head-dipping as a measure of exploration in a modified hole-
board. Psychopharmacologia 44, 53–59. doi: 10.1007/BF00421184
Garcia-Larrea. L., Magnin, M. (2008). Pathophysiology of neuropathic pain: review of experimental models and proposed mechanisms. Presse Med. 37,:315–340. doi: 10.1016/j.lpm.2007.07.025.
Handley, S. L., & Mithani, S. (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ’fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327, 1–5. doi:10.1007/BF00504983
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004) Discovering endophenotypes for major depression, Neuropsychopharmacology. doi: 10.1038/sj.npp.1300506
Jaggi, A. S., Jain, V., Singh, N. (2011). Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011, 25, 1-28. doi: 10.1111/j.1472-8206.2009.00801.x
Klein, D. F. (1974) Endogenomorphic Depression: A Conceptual and Terminological Revision. Arch Gen Psychiatry 31, 447–454. doi: 10.1001/archpsyc.1974.01760160005001
Krishnan, V., & Nestler, E. J. (2011) Animal models of depression: Molecular perspectives. Curr Top Behav Neurosci 7, 121–147. doi: 10.1007/7854_2010_108
Ledoux, J. E., Thompson, M. E., Iadecola, C., Tucker, L. W., & Reis, D. J. (1983) Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science (80- ) 221, 576–578. doi: 10.1126/science.6867731
Levy, R., & Dubois, B. (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16, 916–928. doi: 10.1093/cercor/bhj043
Millan, M. J., & Brocco, M. (2003) The Vogel conflict test: Procedural aspects, γ-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol, 463, 67–96. doi: 10.1016/s0014-2999(03)01275-5
Negus, S. S., Vanderah, T. W., Brandt, M. R., Bilsky, E. J., Becerra, L., Borsook, D. (2006) Preclinical assessment of candidate analgesic rugs: recent advances and future challenges. J Pharmacol Exp Ther, 319, 507–514. doi: 10.1124/jpet.106.106377
Nestler, E. J., & Hyman, S. E. (2010) Animal models of neuropsychiatric disorders, Nature Publishing Group. doi: 10.1038/nn.2647
Pellow, S., & File, S. E. (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacol Biochem Behav 24, 525–529. doi: : 10.1016/0091-3057(86)90552-6
Planchez, B., Surget, A., & Belzung, C. (2019) Animal models of major depression: drawbacks and challenges. Springer-Verlag Wien. doi: 10.1007/s00702-019-02084-y
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977) Behavioral despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn Ther, 229, 327–336. doi: 10.1016/0014-2999(78)90414-4
Rudy, J.W., Huff, N. C., & Matus-Amat, P. (2004) Understanding contextual fear conditioning: Insights from a two-process model. Neuroscience and Biobehavioral Reviews, 675–685. doi: 10.1016/j.neubiorev.2004.09.004
Shepherd, J. K., Grewal, S. S., Fletcher, A., Bill, D. J., & Dourish, C. T. (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl), 116, 56–64. doi: 10.1007/BF02244871
Steimer, T. (2011) Animal models of anxiety disorders in rats and mice: Some conceptual issues. Dialogues Clin Neurosci, 13, 495–506.
Steimer, T. (2002) The biology of fear- and anxiety-related behaviors, Les Laboratoires Servier.
Stein, D. J., & Bouwer, C. (1997) A neuro-evolutionary approach to the anxiety disorders, J Anxiety Disord. doi: 10.1016/s0887-6185(97)00019-4
Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985) The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology (Berl) 85, 367–370. doi: 10.1007/BF00428203
Van Gaalen, M. M., & Steckler, T. (2000) Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res 115, 95–106. doi: 10.1016/s0166-4328(00)00240-0
Viana, M.B., Tomaz, C., & Graeff, F. G. (1994) The elevated T-maze: A new animal model of anxiety and memory. Pharmacol Biochem Behav 49, 549–554. doi: 10.1016/0091-3057(94)90067-1

Published

2020-10-04

Issue

Section

Número Temático: Cérebro & Mente: Interações