Um modelo integrativo do controle visual da ação

Authors

DOI:

https://doi.org/10.34019/1982-1247.2020.v14.30379

Abstract

O presente estudo apresenta uma proposta integrativa dos modelos de controle visual da ação, principalmente no que diz respeito às tarefas visualmente dirigidas. Dentro destes modelos, a calibração entre os sinais visuais e os sinais vestibulo-cinestésicos é de fundamental importância, especialmente no caso das tarefas visualmente dirigidas. O Modelo de Controle Hierarquizado (Marken, 1985), o Modelo de Organização Funcional (Rieser et al., 1995), a Heurística Temporal (Lederman et al., 1987) e o Modelo de Controle Visual da Locomoção (Lee & Lishman, 1977b), são integrados dentro de um único modelo, que ainda incorpora desenvolvimentos recentes da pesquisa empírica. O modelo proposto fornece um arcabouço teórico para orientar a pesquisa experimental do controle visual da ação, de forma a determinar as etapas e os fluxos processuais ainda não esclarecidos pelas evidências empíricas.

Downloads

Download data is not yet available.

References

Andersen, R.A. & Buneo, C.A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25, 189-220. doi: 10.1146/annurev.neuro.25.112701.142922
Andersen, R.A., Snyder, L.H., Bradley, D.C. & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303-30. doi: 10.1146/annurev.neuro.20.1.303
Avraamides, M.N., Klatzky, R.L., Loomis, J.M., & Golledge, R.G. (2004). Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science, 15(6), 403-8. doi: 10.1111/j.0956-7976.2004.00692.x
Avraamides, M.N., Loomis, J.M., Klatzky, R.L., & Golledge, R.G. (2004). Functional equivalence of spatial representations derived from vision and language: evidence from allocentric judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 804-14. doi: 10.1037/0278-7393.30.4.804
Baddeley, A.D. (2012). Working memory: theories, models, and controversies. Annual Review Psychology, 63, 1-29. doi: 10.1146/annurev-psych-120710-100422
Bigel, M.G. & Ellard, C.G. (2000). The contribution of nonvisual information to simple place navigation and distance estimation: an examination of path integration. Canadian Journal of Experimental Psychology, 54(3), 172-84. doi: 10.1037/h0087339
Bogler, C., Bode, S., & Haynes, J.-D. (2011). Decoding successive computational stages of saliency processing. Current Biology, 21(19), 1667-71. doi: 10.1016/j.cub.2011.08.039
Bruno, N. (2001). When does action resist visual illusions? Trends in Cognitive Sciences, 5(9), 379-82. doi:
10.1016/s1364-6613(00)01725-3
de Rugy, A., Montagne, G., Buekers, M.J. & Laurent, M. (2002). Temporal information for spatially constrained locomotion. Experimental Brain Research, 146, 129-41. doi: 10.1007/s00221-002-1155-0
Eby, D.W., & Loomis, J.M. (1987). A study of visually directed throwing in the presence of multiple distance cues. Perception & Psychophysics, 41(4), 308-12. doi: 10.3758/BF03208231
Ellard, C.G. & Shaughnessy, S.C. (2003). A comparison of visual and nonvisual sensory inputs to walked distance in a blind-walking task. Perception, 32, 567-78. doi: 10.1068/p5041
Elliott, D. (1986). Continuous visual information may be important after all: A failure to replicate Thomson (1983). Journal of Experimental Psychology: Human Perception and Performance, 12(3), 388-91. doi: 10.1037/0096-1523.12.3.388
Elliott, D. (1987). The influence of walking speed and prior practice on locomotor distance estimation. Journal of Motor Behavior, 19(4), 476-85. doi: 10.1080/00222895.1987.10735425
Feldman, A.G. (2009). New insights into action–perception coupling. Experimental Brain Research, 194, 39-58. doi: 10.1007/s00221-008-1667-3
Foley, J.M., & Held, R. (1972). Visually directed pointing as a function of target distance, direction, and available cues. Perception & Psychophysics, 12(3), 263-8. doi: 10.3758/BF03207201
Fukusima, S.S., Loomis, J.M., & Da Silva, J.A. (1997). Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 86-100. doi: 10.1037//0096-1523.23.1.86
Gilinsky, A.S. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460-82. doi: 10.1037/h0061505
Glasauer, S., Amorim, M.-A., Viaud-Delmon, I. & Berthoz, A. (2002). Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Experimental Brain Research, 145, 489-97. doi: 10.1007/s00221-002-1146-1
Gogel, W.C. (1965). Equidistance tendency and its consequence. Psychological Bulletin, 64(3), 153-63. doi: 10.1037/h0022197
Gogel, W.C. (1974). Cognitive factors in spatial responses. Psychologia, 17(4), 213-25.
Gogel, W.C. (1977). An indirect measure of perceived distance from oculomotor cues. Perception & Psychophysics, 21(1), 3-11. doi: 10.3758/BF03199459
Gogel, W.C., & Da Silva, J.A. (1987). A two-process theory of the response to size and distance. Perception & Psychophysics, 41(3), 220-38. doi: 10.3758/BF03208221
Gogel, W.C., & Tietz, J.D. (1973). Absolute motion parallax and the specific distance tendency. Perception & Psychophysics, 13(2), 284-92. doi: 10.3758/BF03214141
Gomes, B.C., Oliveira, L.E.M.P., Matsushima, E.H., Santos, M.B., Ribeiro-Filho, N.P. & Da Silva, J.A. (1999). Produzindo distâncias para evitar colisão contra um obstáculo fixo em ambiente rígido? Paidéia: Cadernos de Psicologia e Educação, 9(17), 8-13. doi: 10.1590/S0103-863X1999000200002
Goodale, MA. & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-5. doi: 10.1016/0166-2236(92)90344-8
Künnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77(4), 523-9.
Lackner, J.R., & DiZio, P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annual Review of Psychology, 56, 115–47. doi: 10.1146/annurev.psych.55.090902.142023
Leclere, N.X., Sarlegna, F.R., Coello, Y., & Bourdin, C. (2019). Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia, 131, 193-204. doi: 10.1016/j.neuropsychologia.2019.05.005
Lederman, S.J., Klatzky, R.L., Collins, A. & Wardell, J. (1987). Exploring environments by hand or foot: a time-based heuristics for encoding distance in movement space. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 606-14. doi: 10.1037//0278-7393.13.4.606
Lee, D.N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437-59. doi: 10.1068/p050437
Lee, D.N. & Lishman, J.R. (1977a). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87-95.
Lee, D.N. & Lishman, J.R. (1977b). Visual control of locomotion. Scandinavian Journal of Psychology, 18, 224-30. doi: 10.1111/j.1467-9450.1977.tb00281.x
Loomis, J.M., & Beall, A.C. (1998). Visually controlled locomotion: its dependence on optic flow, three-dimensional space perception, and cognition. Ecological Psychology, 10(3-4), 271-85. doi: 10.1080/10407413.1998.9652685
Loomis, J.M., Da Silva, J.A., Fujita, N., & Fukusima, S.S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906-21. DOI: 10.1037//0096-1523.18.4.906
Loomis, J.M., & Philbeck, J.W. (2008). Measuring spatial perception with spatial updating and action. In R.L. Klatzky, B. MacWhinney, & M. Behrmann (Eds.), Embodiment, Ego-Space, and Action (pp. 1-43). New York: Psychology Press.
Manzone, J. & Heath, M. (2018). Goal-directed reaching: the allocentric coding of target location renders an offline mode of control. Experimental Brain Research, 236, 1149-59. doi: 10.1007/s00221-018-5205-7
Marken, R.S. (1986). Perceptual organization of behavior: a hierarchical control model of coordinated action. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 267-76. doi: 10.1037//0096-1523.12.3.267
Matsushima, E.H. (2004). Are perception and action responses really dissociated? Revisiting dorsal/ventral pathways hypothesis. In A.M. Oliveira, M.P. Teixeira, G.F. Borges & M.J. Ferro (Eds.), Proceedings of the Twentieth Annual Meeting of the International Society for Psychophysics – Fechner Day 2004 (p. 204-9). Coimbra: ISP.
Matsushima, E.H., Chiaretti, P., Kreling, D.B., Lima, M.F., Da Silva, J.A., & Ribeiro-Filho, N.P. (2004). Um invariante no controle da percepção e ação em tarefas de bissecção. Paidéia: Cadernos de Psicologia e Educação, 14(27), 83-8. doi: 10.1590/S0103-863X2004000100011
Matsushima, E.H., Gomes, B.C., Ribeiro-Filho, N.P., & Da Silva, J.A. (2001). Do people walk through exocentric intervals or to perceived egocentric locations? In E. Sommerfeld, R. Kompass, & T. Lachmann (Eds.), Proceedings of the Seventeenth Annual Meeting of the International Society for Psychophysics (pp. 523-8). Lengerich, Germany: Pabst Science Pubs/ISP.
Matsushima, E.H. & Ribeiro-Filho, N.P. (2003). Interações entre sistemas de referência alocêntricos e egocêntricos: evidências dos estudos com direção percebida. Estudos e Pesquisas em Psicologia, 3(1), 105-118.
Matsushima, E.H., Ribeiro-Filho, N.P., Douchkin, I.O., Da Silva, J.A. (2002). Interaction between binocular and pictorial cues for visually directed walking. In J.A. Da Silva, E.H. Matsushima & N.P. Ribeiro-Filho (Eds.), Proceedings of the Eighteenth Annual Meeting of the International Society for Psychophysics (pp. 245-51). Rio de Janeiro: ISP.
Muroi, D., & Higuchi, T. (2017). Walking through an aperture with visual information obtained at a distance. Experimental Brain Research, 235, 219-30. doi: 10.1007/s00221-016-4781-7
Olthuis, R., Van Der Kamp, J., & Caljouw, S. (2017). Verbalizations Affect Visuomotor Control in Hitting Objects to Distant Targets. Frontiers in Psychology, 8, 661. doi: 10.3389/fpsyg.2017.00661
Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and Space (pp. 163-82). Oxford: Oxford University Press.
Philbeck, J.W., & Loomis, J.M. (1997). Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 72-85. doi: 10.1037//0096-1523.23.1.72
Philbeck, J.W. Loomis, J.M., & Beall, A.C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59(4), 601-12. doi: 10.3758/bf03211868
Pierce, J.E., Saj, A., & Vuilleumier, P. (2019). Differential parietal activations for spatial remapping and saccadic control in a visual memory task. Neuropsychologia, 131, 129-38. doi: 10.1016/j.neuropsychologia.2019.05.010
Redding, G.M., & Wallace, B. (2001). Calibration and alignment are separable: evidence from prism adaptation. Journal of Motor Behavior, 33(4), 401-12. doi: 10.1080/00222890109601923
Rieser, J.J., Pick, Jr., H.L., Ashmead, D.H., & Garing, A.E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480-97. doi: 10.1037//0096-1523.21.3.480
Rieser, J.J., Ashmead, D.H., Talor, C.R. & Youngquist, G.A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675-89. doi: 10.1068/p190675
Rungratsameetaweemana, N., Itthipuripat, S., Salazar, A. & Serences, J.T. (2018). Expectations do not alter early sensory processing during perceptual decision-making. The Journal of Neuroscience, 38(24), 5632-48. doi:10.1523/JNEUROSCI.3638-17.2018
Schneider, W.X. (1995). VAM: A neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Visual Cognition, 2(2-3), 331-76. doi: 10.1080/13506289508401737
Schwartz, M. (1999). Haptic perception of the distance walked when blindfolded. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 852-65. doi: 10.1037//0096-1523.25.3.852
Similä, S.S. & McIntosh, R.D. (2015). Look where you’re going! Perceptual attention constrains the online guidance of action. Vision Research, 110B, 179-89. doi: 10.1016/j.visres.2014.06.002
Steenhuis, R.E. & Goodale, M.A. (1988). The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist? Journal of Motor Behavior, 20(4), 399-415. doi: 10.1080/00222895.1988.10735454
Sun, H.-J., Campos, J.L., Young, M., Chan, G.S.W. & Ellard, C.G. (2004). The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception, 33, 49-65. doi: 10.1068/p5145
Thomson, J.A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427-43. doi: 10.1037//0096-1523.9.3.427
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield (Eds.), Analysis of Visual Behavior (pp. 549-86). Cambridge: MIT Press.
Vishton, P.M., Rea, J.G., Cutting, J.E., & Nuñez, L.N. (1999). Comparing effects of the horizontal-vertical illusion on grip scaling and judgment: relative versus absolute, not perception versus action. Journal of Experimental Psychology: Human Perception and Performance, 25, 1659-72. doi: 10.1037//0096-1523.25.6.1659
Weiss, P.H., Marshall, J.C., Zilles, K., & Fink, G.R. (2003). Are action and perception in near and far space additive or interactive factors? NeuroImage, 18, 837-46. doi: 10.1016/s1053-8119(03)00018-1
Zhao, H., & Warren, W.H. (2015). On-line and model-based approaches to the visual control of action. Vision Research, 110, 190-202. doi: 10.1016/j.visres.2014.10.008

Published

2020-10-24

Issue

Section

Número Temático Cérebro & Mente: Reflexões e Processos Psicológicos Básicos