An integrative model of visual control of action

Resumo

The present study offers an integrative proposal of a model of visual control of action, specifically in relation to the visually directed tasks. Within these models, the calibration between visual signals and vestibulo-kinesthetic signals is of fundamental importance, especially in the case of visually directed tasks. The Hierarchical Control Model (Marken, 1985), the Functional Organization Model (Rieser et al., 1995), the Time-based Heuristics (Lederman et al., 1987), and the Model of Visual Control of Locomotion (Lee & Lishman, 1977b), are integrated into a single model, which still incorporates recent developments in empirical research. The proposed model provides a theoretical framework to guide the experimental research of the visual control of action, in order to determine the processing steps and paths not yet clarified by the empirical evidence.

Referências

Andersen, R.A. & Buneo, C.A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25, 189-220. doi: 10.1146/annurev.neuro.25.112701.142922
Andersen, R.A., Snyder, L.H., Bradley, D.C. & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303-30. doi: 10.1146/annurev.neuro.20.1.303
Avraamides, M.N., Klatzky, R.L., Loomis, J.M., & Golledge, R.G. (2004). Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science, 15(6), 403-8. doi: 10.1111/j.0956-7976.2004.00692.x
Avraamides, M.N., Loomis, J.M., Klatzky, R.L., & Golledge, R.G. (2004). Functional equivalence of spatial representations derived from vision and language: evidence from allocentric judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 804-14. doi: 10.1037/0278-7393.30.4.804
Baddeley, A.D. (2012). Working memory: theories, models, and controversies. Annual Review Psychology, 63, 1-29. doi: 10.1146/annurev-psych-120710-100422
Bigel, M.G. & Ellard, C.G. (2000). The contribution of nonvisual information to simple place navigation and distance estimation: an examination of path integration. Canadian Journal of Experimental Psychology, 54(3), 172-84. doi: 10.1037/h0087339
Bogler, C., Bode, S., & Haynes, J.-D. (2011). Decoding successive computational stages of saliency processing. Current Biology, 21(19), 1667-71. doi: 10.1016/j.cub.2011.08.039
Bruno, N. (2001). When does action resist visual illusions? Trends in Cognitive Sciences, 5(9), 379-82. doi:
10.1016/s1364-6613(00)01725-3
de Rugy, A., Montagne, G., Buekers, M.J. & Laurent, M. (2002). Temporal information for spatially constrained locomotion. Experimental Brain Research, 146, 129-41. doi: 10.1007/s00221-002-1155-0
Eby, D.W., & Loomis, J.M. (1987). A study of visually directed throwing in the presence of multiple distance cues. Perception & Psychophysics, 41(4), 308-12. doi: 10.3758/BF03208231
Ellard, C.G. & Shaughnessy, S.C. (2003). A comparison of visual and nonvisual sensory inputs to walked distance in a blind-walking task. Perception, 32, 567-78. doi: 10.1068/p5041
Elliott, D. (1986). Continuous visual information may be important after all: A failure to replicate Thomson (1983). Journal of Experimental Psychology: Human Perception and Performance, 12(3), 388-91. doi: 10.1037/0096-1523.12.3.388
Elliott, D. (1987). The influence of walking speed and prior practice on locomotor distance estimation. Journal of Motor Behavior, 19(4), 476-85. doi: 10.1080/00222895.1987.10735425
Feldman, A.G. (2009). New insights into action–perception coupling. Experimental Brain Research, 194, 39-58. doi: 10.1007/s00221-008-1667-3
Foley, J.M., & Held, R. (1972). Visually directed pointing as a function of target distance, direction, and available cues. Perception & Psychophysics, 12(3), 263-8. doi: 10.3758/BF03207201
Fukusima, S.S., Loomis, J.M., & Da Silva, J.A. (1997). Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 86-100. doi: 10.1037//0096-1523.23.1.86
Gilinsky, A.S. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460-82. doi: 10.1037/h0061505
Glasauer, S., Amorim, M.-A., Viaud-Delmon, I. & Berthoz, A. (2002). Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Experimental Brain Research, 145, 489-97. doi: 10.1007/s00221-002-1146-1
Gogel, W.C. (1965). Equidistance tendency and its consequence. Psychological Bulletin, 64(3), 153-63. doi: 10.1037/h0022197
Gogel, W.C. (1974). Cognitive factors in spatial responses. Psychologia, 17(4), 213-25.
Gogel, W.C. (1977). An indirect measure of perceived distance from oculomotor cues. Perception & Psychophysics, 21(1), 3-11. doi: 10.3758/BF03199459
Gogel, W.C., & Da Silva, J.A. (1987). A two-process theory of the response to size and distance. Perception & Psychophysics, 41(3), 220-38. doi: 10.3758/BF03208221
Gogel, W.C., & Tietz, J.D. (1973). Absolute motion parallax and the specific distance tendency. Perception & Psychophysics, 13(2), 284-92. doi: 10.3758/BF03214141
Gomes, B.C., Oliveira, L.E.M.P., Matsushima, E.H., Santos, M.B., Ribeiro-Filho, N.P. & Da Silva, J.A. (1999). Produzindo distâncias para evitar colisão contra um obstáculo fixo em ambiente rígido? Paidéia: Cadernos de Psicologia e Educação, 9(17), 8-13. doi: 10.1590/S0103-863X1999000200002
Goodale, MA. & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-5. doi: 10.1016/0166-2236(92)90344-8
Künnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77(4), 523-9.
Lackner, J.R., & DiZio, P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annual Review of Psychology, 56, 115–47. doi: 10.1146/annurev.psych.55.090902.142023
Leclere, N.X., Sarlegna, F.R., Coello, Y., & Bourdin, C. (2019). Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia, 131, 193-204. doi: 10.1016/j.neuropsychologia.2019.05.005
Lederman, S.J., Klatzky, R.L., Collins, A. & Wardell, J. (1987). Exploring environments by hand or foot: a time-based heuristics for encoding distance in movement space. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 606-14. doi: 10.1037//0278-7393.13.4.606
Lee, D.N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437-59. doi: 10.1068/p050437
Lee, D.N. & Lishman, J.R. (1977a). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87-95.
Lee, D.N. & Lishman, J.R. (1977b). Visual control of locomotion. Scandinavian Journal of Psychology, 18, 224-30. doi: 10.1111/j.1467-9450.1977.tb00281.x
Loomis, J.M., & Beall, A.C. (1998). Visually controlled locomotion: its dependence on optic flow, three-dimensional space perception, and cognition. Ecological Psychology, 10(3-4), 271-85. doi: 10.1080/10407413.1998.9652685
Loomis, J.M., Da Silva, J.A., Fujita, N., & Fukusima, S.S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906-21. DOI: 10.1037//0096-1523.18.4.906
Loomis, J.M., & Philbeck, J.W. (2008). Measuring spatial perception with spatial updating and action. In R.L. Klatzky, B. MacWhinney, & M. Behrmann (Eds.), Embodiment, Ego-Space, and Action (pp. 1-43). New York: Psychology Press.
Manzone, J. & Heath, M. (2018). Goal-directed reaching: the allocentric coding of target location renders an offline mode of control. Experimental Brain Research, 236, 1149-59. doi: 10.1007/s00221-018-5205-7
Marken, R.S. (1986). Perceptual organization of behavior: a hierarchical control model of coordinated action. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 267-76. doi: 10.1037//0096-1523.12.3.267
Matsushima, E.H. (2004). Are perception and action responses really dissociated? Revisiting dorsal/ventral pathways hypothesis. In A.M. Oliveira, M.P. Teixeira, G.F. Borges & M.J. Ferro (Eds.), Proceedings of the Twentieth Annual Meeting of the International Society for Psychophysics – Fechner Day 2004 (p. 204-9). Coimbra: ISP.
Matsushima, E.H., Chiaretti, P., Kreling, D.B., Lima, M.F., Da Silva, J.A., & Ribeiro-Filho, N.P. (2004). Um invariante no controle da percepção e ação em tarefas de bissecção. Paidéia: Cadernos de Psicologia e Educação, 14(27), 83-8. doi: 10.1590/S0103-863X2004000100011
Matsushima, E.H., Gomes, B.C., Ribeiro-Filho, N.P., & Da Silva, J.A. (2001). Do people walk through exocentric intervals or to perceived egocentric locations? In E. Sommerfeld, R. Kompass, & T. Lachmann (Eds.), Proceedings of the Seventeenth Annual Meeting of the International Society for Psychophysics (pp. 523-8). Lengerich, Germany: Pabst Science Pubs/ISP.
Matsushima, E.H. & Ribeiro-Filho, N.P. (2003). Interações entre sistemas de referência alocêntricos e egocêntricos: evidências dos estudos com direção percebida. Estudos e Pesquisas em Psicologia, 3(1), 105-118.
Matsushima, E.H., Ribeiro-Filho, N.P., Douchkin, I.O., Da Silva, J.A. (2002). Interaction between binocular and pictorial cues for visually directed walking. In J.A. Da Silva, E.H. Matsushima & N.P. Ribeiro-Filho (Eds.), Proceedings of the Eighteenth Annual Meeting of the International Society for Psychophysics (pp. 245-51). Rio de Janeiro: ISP.
Muroi, D., & Higuchi, T. (2017). Walking through an aperture with visual information obtained at a distance. Experimental Brain Research, 235, 219-30. doi: 10.1007/s00221-016-4781-7
Olthuis, R., Van Der Kamp, J., & Caljouw, S. (2017). Verbalizations Affect Visuomotor Control in Hitting Objects to Distant Targets. Frontiers in Psychology, 8, 661. doi: 10.3389/fpsyg.2017.00661
Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and Space (pp. 163-82). Oxford: Oxford University Press.
Philbeck, J.W., & Loomis, J.M. (1997). Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 72-85. doi: 10.1037//0096-1523.23.1.72
Philbeck, J.W. Loomis, J.M., & Beall, A.C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59(4), 601-12. doi: 10.3758/bf03211868
Pierce, J.E., Saj, A., & Vuilleumier, P. (2019). Differential parietal activations for spatial remapping and saccadic control in a visual memory task. Neuropsychologia, 131, 129-38. doi: 10.1016/j.neuropsychologia.2019.05.010
Redding, G.M., & Wallace, B. (2001). Calibration and alignment are separable: evidence from prism adaptation. Journal of Motor Behavior, 33(4), 401-12. doi: 10.1080/00222890109601923
Rieser, J.J., Pick, Jr., H.L., Ashmead, D.H., & Garing, A.E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480-97. doi: 10.1037//0096-1523.21.3.480
Rieser, J.J., Ashmead, D.H., Talor, C.R. & Youngquist, G.A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675-89. doi: 10.1068/p190675
Rungratsameetaweemana, N., Itthipuripat, S., Salazar, A. & Serences, J.T. (2018). Expectations do not alter early sensory processing during perceptual decision-making. The Journal of Neuroscience, 38(24), 5632-48. doi:10.1523/JNEUROSCI.3638-17.2018
Schneider, W.X. (1995). VAM: A neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Visual Cognition, 2(2-3), 331-76. doi: 10.1080/13506289508401737
Schwartz, M. (1999). Haptic perception of the distance walked when blindfolded. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 852-65. doi: 10.1037//0096-1523.25.3.852
Similä, S.S. & McIntosh, R.D. (2015). Look where you’re going! Perceptual attention constrains the online guidance of action. Vision Research, 110B, 179-89. doi: 10.1016/j.visres.2014.06.002
Steenhuis, R.E. & Goodale, M.A. (1988). The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist? Journal of Motor Behavior, 20(4), 399-415. doi: 10.1080/00222895.1988.10735454
Sun, H.-J., Campos, J.L., Young, M., Chan, G.S.W. & Ellard, C.G. (2004). The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception, 33, 49-65. doi: 10.1068/p5145
Thomson, J.A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427-43. doi: 10.1037//0096-1523.9.3.427
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield (Eds.), Analysis of Visual Behavior (pp. 549-86). Cambridge: MIT Press.
Vishton, P.M., Rea, J.G., Cutting, J.E., & Nuñez, L.N. (1999). Comparing effects of the horizontal-vertical illusion on grip scaling and judgment: relative versus absolute, not perception versus action. Journal of Experimental Psychology: Human Perception and Performance, 25, 1659-72. doi: 10.1037//0096-1523.25.6.1659
Weiss, P.H., Marshall, J.C., Zilles, K., & Fink, G.R. (2003). Are action and perception in near and far space additive or interactive factors? NeuroImage, 18, 837-46. doi: 10.1016/s1053-8119(03)00018-1
Zhao, H., & Warren, W.H. (2015). On-line and model-based approaches to the visual control of action. Vision Research, 110, 190-202. doi: 10.1016/j.visres.2014.10.008
Publicado
2020-10-24
Seção
Número Temático Cérebro & Mente: Reflexões e Processos Psicológicos Básicos