Fotoestabilidade de protetores solares comerciais expostos a radiação solar

Autores

  • Rhaíssa Prado Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais https://orcid.org/0000-0002-9753-5399
  • Filipe Soares Bertges Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais
  • Sônia Aparecida Figueiredo Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, São Paulo https://orcid.org/0000-0003-2549-4273
  • Maria José Vieira Fonseca Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, São Paulo https://orcid.org/0000-0002-7123-4838
  • Guilherme Diniz Tavares Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais https://orcid.org/0000-0001-6276-0994
  • Fernanda Maria Vilela Universidade Federal de Juiz de Fora https://orcid.org/0000-0001-6169-4550

DOI:

https://doi.org/10.34019/1982-8047.2020.v46.28819

Palavras-chave:

Protetores Solares, Filtros Ultravioleta, Estabilidade de Cosméticos, Fotodegradação

Resumo

Introdução: O uso de protetores solares é recomendado para reduzir os danos na pele e na prevenção do câncer de pele. No entanto, tem sido demonstrado que os filtros solares podem sofrer processos de fotodegradação induzidos pela radiação ultravioleta (UV), podendo levar a redução da capacidade fotoprotetora, geração de radicais livres e produtos intermediários tóxicos que podem reagir com as estruturas da pele causando danos biológicos. Objetivo: Avaliar a fotoestabilidade de quatro formulações fotoprotetoras com fator de proteção solar (FPS) 30 adicionados de diferentes filtros UV químicos e físicos. Material e Métodos: Cada produto foi exposto a radiação solar entre 10h e 15h (Índice UV: 6.0). As áreas sobre as curvas (ASC) dos espectros de absorção das formulações antes e após a exposição à radiação foram utilizados para calcular a relação entre a ASC antes e após a radiação solar. Resultados: Somente duas formulações, que apresentaram o índice de área sobre a curva (IASC) maior que 0.8, foram consideradas fotoestáveis. Os resultados mostraram que apesar das formulações possuírem o mesmo FPS 30, apresentaram diferentes espectros de absorção nas regiões do UVA1, UVA2 e UVB e que a fotoestabilidade das formulações testadas variou consideravelmente. Conclusão: O desenvolvimento de formulações fotoestáveis é uma etapa crítica uma vez que os produtos de degradação dos filtros UV podem agir como foto-oxidantes. Além disso, o aumento da exposição à radiação UV devido a redução da capacidade fotoprotetora de formulações instáveis aumenta o risco de queimaduras e câncer de pele.

Downloads

Não há dados estatísticos.

Referências

Blesić SM, Preez DJ, Stratimirović DI, Ajtić JV, Ramotsehoa MC, Allen MW, Wright CY. Characterization of personal solar ultraviolet radiation exposure using detrended fluctuation analysis. Environ Res. 2020; 182:108976. doi: 10.1016/j.envres.2019.108976

González MDH, Paz ML, Leone J. Sunlight effects on immune system: is there something else in addition to UV-Induced Immunosuppression? Biomed Res Int. 2016; 2016. doi: 10.1155/2016/1934518.

Martincigh BS, Ollengo MA. The photostabilizing effect of grape seed extract on three common sunscreen absorbers. Photochem Photobiol. 2016; 92:870-84. doi: 10.1111/php.12652.

Freitas JV, Lopes NP, Gaspar LR. Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. Eur J Pharm Sci. 2015; 78:79-89. doi: 10.1016/j.ejps.2015.07.004.

Vicentini FMTC, Fonseca YM, Pitol DL, Iyomasa MM, Bentley MV, Fonseca MJ. Evaluation of protective effect of a water-in-oil microemulsion incorporating quercetin against UVB-induced damage in hairless mice skin. J Pharm Pharmaceut Sci. 2010; 13:274-85.

Pescia, AC, Astolfi P, Puglia C, Bonina F, Perrotta R, Herzog B et al. On the assessment of photostability of sunscreens exposed to UVA irradiation: from glass plates to pig/human skin, which is best? Int J Pharm. 2012; 427:217-23. doi: 10.1016/j.ijpharm.2012.02.001.

World Health Organization. 1994. Environmental Health Criteria, nº 160: ultraviolet radiation. Geneva: WHO; 1994.

Marto J, Gouveia LF, Chiari BG, Paiva A, Isaac V, Pinto P, Simões P. The green generation of sunscreens: using coffee industrial sub-products. Ind Crops Prod. 2016; 80:93-100. doi: 10.1016/j.indcrop.2015.11.033

Figueiredo SA, de Moraes DC, Vilela FMP, de Faria AN, Santos MH, Fonseca MJV. A novel research model for evaluating sunscreen protection in the UV-A1. J Photoch Photobio B. 2018; 178:61-8. doi: 10.1016/j.jphotobiol.2017.10.031

Vettor M, Perugini P, Scalia S, Conti, B, Genta I et al. Poly (D,L-lactide) nanoencapsulation to reduce photoinactivation of a sunscreen agent. Int J Cosmet Sci. 2008; 30:219-27. doi.org/10.1111/j.1468-2494.2008.00443.x.

Pescia, AC, Astolfi P, Puglia C, Bonina F, Perrotta R, Herzog B et al. On the assessment of photostability of sunscreens exposed to UVA irradiation: from glass plates to pig/human skin, which is best? Int J Pharm. 2012; 427:217-23. doi: 10.1016/j.ijpharm.2012.02.001.

Oliveira, DN, Delafiori J, Ferreira MS, Catharino RR. In vitro evaluation of sun protection factor and stability of commercial sunscreens using mass spectrometry. J Chromatogr B. 2015; 988:13-9. doi: 10.1016/j.jchromb.2015.02.018.

Abadi PG, Shirazi FH, Joshaghani M, Moghimi HR. Influence of formulation of ZnO nanoblokes containing metallic ions dopants on their cytotoxicity and protective factors: an in vitro study on human skin cells exposed to UVA radiation. Toxicol Rep. 2018; 5:468-79. doi: 10.1016/j.toxrep.2018.03.001

Shaath NA. Ultraviolet filters. Photochem Photobiol Sci. 2010; 9:464-9.

Kockler J, Oelgemoller M, Robertson S, Glass BD. Photostability of sunscreens. J Photochem Photobiol C. 2012; 13:91-110. doi.org/10.1016/j.jphotochemrev.2011.12.001.

Ramos S, Homem V, Alves A, Santos L. Advences in analytical methods and occurrence of organic UV-filters in the environment: a review. Sci Total Environ. 2015; 526:278-311. doi: 10.1016/j.scitotenv.2015.04.055

Manaia EB, Kaminski RCK, Corrêa MA, Chiavacci LA. Inorganic UV filters. Braz J Pharm Sci. 2013; 49:201-9. doi.org/10.1590/S1984-82502013000200002

Romanhole RC, Ataide JA, Cefali LC, Moriel P, Mazolla PG. Photostability study of commercial sunscreens submitted to artificial UV irradiation and/or fluorescent radiation. J Photochem Photobiol B Biol. 2016; 162:45-9. doi: 10.1016/j.jphotobiol.2016.06.011.

Singh S, Lodhi NK, Mishra AK, Jose S, Kumar SN, Kotnala RK. Assessment of satellite-retrieved surface UVA and UVB radiation by comparison with ground-measurements and trends over Mega-city Delhi. Atmos Environ. 2018; 188:60-70. doi: 10.1016/j.atmosenv.2018.06.027

Beasley DG, Meyer TA. Characterization of the UVA protection provided by avobenzone, zinc oxide, and titanium dioxide in broad-spectrum sunscreen products. Am J Clin Dermatol. 2010; 11:413-21. doi: 10.2165/11537050-000000000-00000.

Mohr LC, Capelezzo AP, Baretta CRDM, Martins MAPM, Fiori MS, Mello JMM. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid biodegradable polymer. Polym Test. 2019; 77:105867. doi: 10.1016/j.polymertesting.2019.04.014

Figueiredo SA, Vilela FMP, Silva CA, Cunha TM, Santos MH, Fonseca MJV. In vitro and in vivo photoprotective/photochemopreventive potential of Garcinia brasiliensis epicarp extract. J Photoch Photobio B. 2014; 131:65-73. doi: 10.1016/j.jphotobiol.2014.01.004

Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation. Phytomedicine. 2019; 57:215-22. doi: 10.1016/j.phymed.2018.12.022

Xiao Y, Chu XN, He M, Liu XC, Hu JY. Impact of UVA pre-radiation on UVC disinfection performance: inactivation, repair and mechanism study. Water Res. 2018; 141:279-88. doi: 10.1016/j.watres.2018.05.021

Agência Nacional de Vigilância Sanitária (BR). Resolução RDC nº 30 de 1 de junho de 2012. Aprova o regulamento técnico “Mercosul sobre protetores solares em cosméticos e dá outras providências.” 2012.

Hojerová J, Medoycíková A, Mikula M. Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. Internat J Pharm. 2011; 408:27-38. doi.org/10.1016/j.ijpharm.2011.01.040.

Duarte J, Almeida IF, Costa M, da Silva ES, Faria JL, Sousa Lobo JM, Costa PC, Scalia S. Alginate microparticles as carriers fot the UV filter 2-ethylhexyl 4-methoxycinnamate: influence on photostability. Int. J. Cosmetic Sci. 2019; 41:585-93. doi: 10.1111/ics.12578

Jarzycka A, Lewínska A, Gancarz R, Kazimiera AW. Assessment of extracts of Helichrysum arenarium, Crataeus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J Photochem Photobiol B. 2013; 128:50-7. doi.org/10.1016/j.jphotobiol.2013.07.029.

Gaspar LR, Campos PM. Photostability and efficacy studies of topical formulations containing UV-filters combination and vitamins A, C and E. Int J Pharm. 2007; 343:180-1. doi.org/10.1016/j.ijpharm.2007.05.048.

Akrman J, Kubác L, Bendová H, Jírová D, Kejlová K. Quartz plates for determining sun protection in vitro and testing photostability of commercial sunscreens. Int J Cosm Sci. 2009: 31:119-29. doi.org/10.1111/j.1468-2494.2008.00482.x.

Scalia S, Mezzena M, Bianchi A. Comparative evaluation of different substrates for the in vitro determination of sunscreen photostability: spectrophotometric and HPLC analyses. Int J Cosmet Sci. 2010; 32:55-64. doi.org/10.1111/j.1468-2494.2009.00536.x

Lacatusu I, Badea N, Murariu A, Meghea A. The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles. Nanoscale Res Lett. 2011; 6:73. doi: 10.1186/1556-276X-6-73

Yuan L, Li S, Huo D, Zhou W, Wang X, Bai D, Hu J. Studies on the preparation and photostability of avobenzone and (2-hydroxy)propyl-β-cyclodextrin inclusion complex. J Photoch Photobio B. 2019; 369, 174-180. 10.1016/j.jphotochem.2018.09.036

Stokes R, Diffey BL. In vitro assessment of sunscreen photostability: the effect of radiation source, sunscreen application thickness and substrate. Int J Cosmet Sci. 1999; 21:241-51. doi.org/10.1046/j.1467-2494.1999.203163.x.

Moyal DD, Refrégier JL, Chardon, A. In vivo measurement of the photostability of sunscreen products using diffuse reflectance spectroscopy. Photodermatol Photoimmunol Photomed. 2002; 18:14-22. doi.org/10.1034/j.1600-0781.2002.180103.x.

Gonzalez H, Tarras-Wahlberg N, Strömdahl B, Juzeniene A, Moan J, Larko O et al. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007; 7.

COLIPA, CTFA, SA, JCIA. International Sun Protection Factor (SPF) Test Method, 2006.

INPE. Centro de prevenção do tempo e estudos climáticos. Previsão de tempo, 2016. Availabe from: https://www.cptec.inpe.br/

Vilela FMP, Oliveira FM, Vicentini FTMC, Casagrande R, Verri Jr W, Cunha TM et al. Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation. J Photochem Photobiol B. 2016; 163:413-20. doi.org/10.1016/j.jphotobiol.2016.09.007.

Jansen R, Osterwalder U, Wang SQ, Burnett M, Henry WL. Photoprotection. Part II. Sunscreen: development, efficacy, and controversies. J Am Acad Dermatol. 2013; 69:e1-867.e14. doi.org/10.1016/j.jaad.2013.08.022.

Chatelain EB, Gabard B. Photostabilization of butyl methoxydibenzoylmethane (avobenzone) and ethylhexylmethoxycinnamate by bis-ethylhexyloxyphenolmethoxyphenyltriazine (tinosorb S), a new broadband filter. Photochem Photobiol. 2001; 74:401-6. doi.org/10.1562/0031-8655(2001)0740401POBMAA2.0.CO2.

Kikuchi AM, Yagi M. Direct observation of the intermolecular triplet-triplet energy transfer from UV-a absorber 4-tert-butyl-4’-methoxydibanzoylmethane to UV-B absorber octylmethoxycinnamate. Chem Phys Let. 2011; 513:63-6. doi.org/10.1016/j.cplett.2011.07.067.

Bonda CA, Lott D. Sunscreen photostability. In Principles and practice of photoprotection. Springer International Publishing; 2016. P. 247-73

Abid AR, Marciniak B, Pedzinski T, Shahid M. Photo-stability and photo-sensitizing characterization of selected sunscreen’s ingredients. J Photochem Photobiol A. 2017; 332:241-50. doi.org/10.1016/j.jphotochem.2016.08.036.

Kumar P, Deshpande A. Patent review on photostability enhancement of avobenzone and its formulations. Recent Pat Drug Deliv Formul. 2015; 9:121-8. doi: 10.2174/1872211309666150131141414

Kawakami CM, Gaspar LR. Mangiferin and naringenin affect the photostability and phototoxicity of sunscreens containing avobenzone. J Photochem Photobiol B. 2015; 47: 239-47. doi.org/10.1016/j.jphotobiol.2015.08.014.

Shaath NA. SPF boosters & photostability of ultraviolet filters. Happi Magazine; 2007.

Damiani E, Rosati L, Castagna R, Carloni P, Greci L. Changes in ultraviolet absorvance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation. J Photochem Photobiol B. 2006; 82:204-13. doi.org/10.1016/j.jphotobiol.2005.03.011.

Scalia S, Casolari A, Iaconinoto A, Simeoni S. Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-pmethoxycinnamate. J Pharm Biomed Anal. 2002; 30:1181-9. doi.org/10.1016/S0731-7085(02)00433-8.

Tarras-Wahlberg N, Stenhagen G, Larko O, Wennberg AM, Wennerstrom O. Changes in ultraviolet absorption of sunscreen after ultraviolet radiation. J Invest Dermatol. 1999; 113: 547-53. doi.org/10.1046/j.1523-1747.1999.00721.x.

Kawakami CM, Máximo LNC, Fontanezi BB, Silva RS, Gaspar LR. Diethylaminohydroxybenzoyl hexyl benzoate (DHHB) as additive to the UV filter avobenzone in cosmetic sunscreen formulations: evaluation of the photochemical behavior and photostabilizing effect. Eur J Pharm Sci. 2017; 99:299-309. doi.org/10.1016/j.ejps.2016.12.031.

Cambon M, Issachar N, Castelli D, Robert C. An in vivo method to assess the photostability of UV filters in a sunscreen. Int. J Cosmet Sci. 2011; 52:1-11.

Autier P, Doré JF, Négrier S, Liénard D, Panizzon R, Lejeune FJ et al. Sunscreen use and duration of sun exposure: a double-blind, randomized trial. J Natl Cancer Inst. 1999; 91:1304-9. doi.org/10.1093/jnci/91.15.1304.

Gil EM, Kim TH. UV-induced immune suppression and sunscreen. Photodermatol Photoimmunol Photomed. 2000; 16:101-10. doi.org/10.1111/j.1600-0781.2000.160301.x.

Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD. Sunscreens: what´s important to know. J Eur Acad Dermatol Venereol. 2008: 22: 1110-8.

Afonso S, Horita K, Silva JPS, Almeida IF, Amaral MH, Lobão PA et al. Photodegradation of avobenzone: stabilization effect of antioxidants. J Photochem Photobiol B. 2014; 140:36-40. doi.org/10.1016/j.jphotobiol.2014.07.004

Nash JF, Tanner PR. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol Photoimmunol Photomed. 2014; 30:88-95. doi.org/10.1111/phpp.12113.

Berkey C, Oguchi N, Miyazawa K, Dauskardt R. Role of sunscreen formulation and photostability to protect the biomechanical barrier function of skin. Biochem. Biophys. Rep. 2019; 19:100657. doi: 10.1016/j.bbrep.2019.100657

Downloads

Publicado

2020-08-17

Como Citar

1.
Prado R, Bertges FS, Figueiredo SA, Fonseca MJV, Tavares GD, Vilela FM. Fotoestabilidade de protetores solares comerciais expostos a radiação solar. HU Rev [Internet]. 17º de agosto de 2020 [citado 29º de março de 2024];46:1-9. Disponível em: https://periodicos.ufjf.br/index.php/hurevista/article/view/28819

Edição

Seção

Artigos Originais

Artigos mais lidos pelo mesmo(s) autor(es)