Implementação em módulo de desenvolvimento FPGA de técnica de detecção de novidades baseada da transformada de Stockwell aplicada a distúrbios de qualidade de energia elétrica em sinais de potência
DOI:
https://doi.org/10.34019/2179-3700.2024.v24.46211Keywords:
Redes Elétricas Inteligentes (REI), Transformada de Stockwell (ST), Qualidade de Energia Elétrica (QEE), Implementação em FPGA, Detecção de Novidades (DN)Abstract
In the context of the consolidation of Smart Grids (SGs), where the presence of nonlinear loads and new forms of electric power generation are becoming increasingly significant, there is a substantial potential for the emergence of new disturbances. Additionally, given the vast amount of data from smart meters, it is necessary to use novelty detection methods on voltage and current waveform signals to preserve relevant information and enable efficient data storage. The Stockwell Transform (ST) is a time-frequency distribution that has shown a strong ability to detect novelties related to signal stationarity changes. Therefore, this work describes the use of the ST for novelty detection in Power Quality (PQ) signals. The implementation of this transform on a Field-Programmable Gate Array (FPGA) platform is proposed through the use of a soft-core processor to optimize the FPGA hardware resources. Furthermore, a voice selection strategy is proposed to reduce algorithm complexity and processing time while maintaining detection capability.
Downloads
References
REFERÊNCIAS
BALASUBBAREDDY, M.; SRI RAM, Kondapalli Venkata; SANGU, Ravindra. Modeling and design of FPGA-based power quality analyzer. In: Microelectronics, Circuits and Systems: Select Proceedings of Micro2021. Singapore: Springer Nature Singapore, 2023. p. 433-443. Doi: https://doi.org/10.1007/978-981-99-0412-9_39.
BANU, E. Afreen et al. Big Data Analytics for Smart Meter Data in Power Systems. In: 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). IEEE, 2024. p. 1-6. Doi: https://doi.org/10.1109/ICONSTEM60960.2024.10568661.
DE OLIVEIRA, Roger Alves; BOLLEN, Math HJ. Deep learning for power quality. Electric Power Systems Research, v. 214, p. 108887, 2023. Doi: https://doi.org/10.1016/j.epsr.2022.108887.
HUANG, Nantian et al. Power quality disturbances classification based on S-transform and probabilistic neural network. Neurocomputing, v. 98, p. 12-23, 2012. Doi: https://doi.org/10.1016/j.neucom.2011.06.041.
KANKALE, Ravishankar; PARASKAR, Sudhir; JADHAO, Saurabh. Classification of power quality disturbances in emerging power system using s-transform and support vector machine. In: 2021 IEEE 2nd International Conference On Electrical Power and Energy Systems (ICEPES). IEEE, 2021. p. 1-6. Doi: https://doi.org/10.1109/ICEPES52894.2021.9699673.
KAPISCH, Eder Barboza. Estimação de frequência e detecção de novidades aplicadas à compressão de sinais elétricos de potência: Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Juiz de Fora, Juiz de Fora, 2019. https://drive.google.com/file/d/1gYNJ-KNjwaZM9-8SQ7k-9vWqSnHssgLK/view?usp=sharing.
KAPISCH, Eder B. et al. Spectral variation-based signal compression technique for gapless power quality waveform recording in smart grids. IEEE Transactions on Industrial Informatics, v. 18, n. 7, p. 4488-4498, 2021. Doi: https://doi.org/10.1109/TII.2021.3121295.
KATARAY, Tarun et al. Integration of smart grid with renewable energy sources: Opportunities and challenges–A comprehensive review. Sustainable Energy Technologies and Assessments, v. 58, p. 103363, 2023. Doi: https://doi.org/10.1016/j.seta.2023.103363.
KUMAR, Rajat et al. Online identification of underlying causes for multiple and multi-stage power quality disturbances using S-transform. IETE Journal of Research, v. 69, n. 6, p. 3739-3749, 2023. Doi: https://doi.org/10.1080/03772063.2021.1913073
PRESS, William H. et al. Numerical recipes in C++: The art of scientific computing (2nd edn) 1 numerical recipes example book (C++)(2nd edn) 2 numerical recipes multi-language code CD ROM with LINUX or UNIX single-screen license revised version3. European Journal of Physics, v. 24, n. 3, p. 329-330, 2003. Doi: https://doi.org/10.1088/0143-0807/24/3/701.
PUJIANTARA, Anissa Eka Marini et al. Improvement of power quality monitoring based on modified S-transform. In: 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). IEEE, 2016. p. 539-544. Doi: https://doi.org/10.1109/ISITIA.2016.7828717.
RIBEIRO, Victor Mendes et al. Real-Time Implementation of Stockwell Transform in FPGA Platform Using Soft-core Processor Applied to Novelty Detection in Power Quality Signals. Journal of Control, Automation and Electrical Systems, p. 1-13, 2024. Doi: https://doi.org/10.1007/s40313-024-01083-z.
SHANG-BIN, Jiao et al. Fast S-transform for fault line selection in distribution network system. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018. p. 2303-2308. Doi: https://doi.org/10.1109/ICIEA.2018.8398094.
SILVA, Leandro Rodrigues Manso et al. The concept of novelty detection applied to power quality. In: 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. p. 1-5. Doi: https://doi.org/10.1109/PESGM.2016.7741689.
STOCKWELL, Robert Glenn; MANSINHA, Lalu; LOWE, R. P. Localization of the complex spectrum: the S transform. IEEE transactions on signal processing, v. 44, n. 4, p. 998-1001, 1996. Doi: https://doi.org/10.1109/78.492555.
WANG, Yanwei; ORCHARD, Jeff. Fast discrete orthonormal Stockwell transform. SIAM Journal on Scientific Computing, v. 31, n. 5, p. 4000-4012, 2009. Doi: https://doi.org/10.1137/080737113.
XIA, Haojie et al. A Review of Advancements and Trends in Time-to-Digital Converters Based on FPGA. IEEE Transactions on Instrumentation and Measurement, 2024. Doi: https://doi.org/10.1109/TIM.2024.3419091.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 ANONMIXS AMARO AFONSO, NAIARA DA SILVA MAIA DOS SANTOS, VICTOR MENDES RIBEIRO, Eder Barboza Kapisch

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
