Uso de Autocodificadores Variacionais para Monitoramento de Integridade Estrutural
Detecção e Quantificação de Alterações Estruturais Utilizando Autocodificadores Variacionais combinados com Cartas de Controle T²
DOI:
https://doi.org/10.34019/2179-3700.2024.v24.46198Keywords:
Monitoramento de Integridade Estrutural, Detecção de danos, Autocodificador Variacional, SHM, Aprendizado de máquinaAbstract
Structural Health Monitoring (SHM) aims to ensure the safety and reliability of civil infrastructures. Autoencoders, unsupervised machine learning models, have shown promise for SHM by learning data features and reducing dimensionality. However, comprehensive studies comparing autoencoder models in SHM are scarce. This study investigates the effectiveness of the Variational Autoencoder (VAE), combined with T² Control Chart, to detect and quantify structural changes in three civil engineering structures. Acceleration signals collected by accelerometers were used as input for the autoencoder to perform unsupervised classification. The latent layer data generated by the VAE were applied to T² analysis, and the obtained values were compared between signal subgroups to identify structural changes. The study concludes that the VAE model combined with T² is effective in both identifying and quantifying changes in structures. The ongoing development of this technique can contribute to advancements in SHM, promoting greater safety, cost reduction, and long-term durability of civil engineering structures.
Downloads
References
ALVES, V.; CURY, A. An automated vibration-based structural damage localization strategy using filter-type feature selection. Mech. Syst. Signal Process. 2023, 190, 110145.
AVCI, O.; ABDELJABER, O.; KIRANYAZ, S.; HUSSEIN, M.; GABBOUJ, M.; INMAN, D.J. A Review of Vibration-Based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications. Mech. Syst. Signal Process. 2021, 147, 107077.
DYKE, J.; BERNAL, D.; BECK, J.; VENTURA, C. Experimental Phase II of the Structural Health Monitoring Benchmark Problem. 2003.
FINOTTI, R.P.; SILVA, C.F.; OLIVEIRA, P.H.E.; BARBOSA, F.d.S.; CURY, A.A.; SILVA, R.C. Novelty detection on a laboratory benchmark slender structure using an unsupervised deep learning algorithm. Lat. Am. J. Solids Struct. 2023, 20, e512.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. MIT Press: Cambridge, MA, USA, 2016.
MONTGOMERY, D. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2009.
MOU, M.; ZHAO, X.; LIU, K.; HUI, Y. NEES: Database for Structural Control and Monitoring Benchmark Problems. 2015.
SOUSA, H.; COURAGE, W. Value of information of a pro-active SHM-based tool supported by advanced FE models and Bayesian statistics towards efficiency in bridge management. Struct. Infrastruct. Eng. 2021, 18, 554–572.
SPÍNOLA NETO, M.; FINOTTI, R.; BARBOSA, F.; CURY, A. Structural Damage Identification Using Autoencoders: A Comparative Study. Buildings 2024, 14, 2014.
PEETERS, B.; DE ROECK, G. One year monitoring of the z24-bridge: Environmental influences versus damage events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171.
TEUGHELS, A.; DE ROECK, G. Structural damage identification of the highway bridge Z24 by FE model updating. J. Sound Vib. 2004, 278, 589–610.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alexandre Cury

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.