Panorama geral dos efeitos da temperatura na saúde humana – Revisão sistemática
DOI:
https://doi.org/10.34019/2179-3700.2023.v23.40548Keywords:
Temperatura. Saúde humana. Mudanças climáticas. Vulnerabilidade climática. Revisão sistemática.Abstract
Climate change poses enormous risks to human life, with complex effects on the global population’s health. The objective of this study was to achieve an overview of the effects of temperature on human health, searching in studies conducted in different cities around the world. A search was carried out in abstracts on CAPES and SCIELO scientific development platforms using the keywords ‘temperature’ and ‘health’ in Portuguese, English and Spanish. The occurrence of several diseases directly related to temperature variations were indicated in 368 articles published in several countries. Asia, North America and Europe were the continents that most contributed with the total of publications, with participations of 37,8%, 22,6% and 20,0%, respectively. Eleven disease chapters were identified, according to the classification of International Disease System. The discussions present the results found by several authors for the six most studied disease chapters in all continents.
Downloads
References
ABBASI, H. The effect of climate change on depression in urban areas of western Iran. BMC Research Notes, v. 14, n. 155, 2021. Disponível em: https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-021-05565-0. Acesso em: 2 mar. 2022.
ADEOLA, A. et al. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: a 19-year data analysis. International Journal of Environmental Research and Public Health, [S.L.], v. 14, n. 11, p. 1360, 8 nov. 2017. Disponível em: https://www.mdpi.com/1660-4601/14/11/1360. Acesso em: 15 jan. 2022.
ALAHMAD, B. et al. The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis. Environmental research, v. 171, p. 278–284, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30703623/. Acesso em: 02 fev. 2022.
ARBUTHNOTT, K. et al. Years of life lost and mortality due to heat and cold in the three largest English cities. Environment international, v. 144, n. 105966, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32771827/. Acesso em: 20 jan. 2022.
ASAMOAH, B.; KJELLSTROM, T.; ÖSTERGREN, P. O. Is ambient heat exposure levels associated with miscarriage or stillbirths in hot regions? A cross-sectional study using survey data from the Ghana Maternal Health Survey 2007. International journal of biometeorology, v. 62, n. 3, p. 319–330, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28748383/. Acesso em: 5 mar. 2022.
AUGER, N. et al. Risk of Congenital Heart Defects after Ambient Heat Exposure Early in Pregnancy. Environmental health perspectives, v. 125, n. 1, p. 8–14, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226695/. Acesso em: 6 mar. 2022.
BASU, R. et al. The impact of maternal factors on the association between temperature and preterm delivery. Environmental research, v. 154, p. 109–114, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459758/. Acesso em: 6 mar. 2022.
CAN, G. et al. Excess Mortality in Istanbul during Extreme Heat Waves between 2013 and 2017. International journal of environmental research and public health, v. 16, n. 22, p. 4348. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31703402/. Acesso em: 21 fev. 2022.
CAPES. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 2021. Disponível em: www.periodicos.capes.gov.br. Acesso em: 30 ago. 2021.
CDC (National Center for Environmental Health). Preparing for the regional health impacts of climate change in the United States: a summary of health effects, resources, and adaptation examples from health departments funded by CDC’s Climate and Health Program. (U.s.), 2020. Disponível em: https://stacks.cdc.gov/view/cdc/99147. Acesso em: 05 jan. 2022.
CHEN, T. T. et al. The spatiotemporal distribution of historical malaria cases in Sweden: a climatic perspective. Malaria Journal, vol. 20, n° 212, 2021. Disponível em: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03744-9. Acesso em: 16 jan. 2022.
CHENG, A. et al. Analyzing the Potential Risk of Climate Change on Lyme Disease in Eastern Ontario, Canada Using Time Series Remotely Sensed Temperature Data and Tick Population Modelling. Remote Sensing, v. 9, n. 609, 2017. Disponível em: https://www.mdpi.com/2072-4292/9/6/609. Acesso em: 19 jan. 2022.
CHOI, G.; BAE, H. J.; LIM, Y. H. Estimation of abnormal temperature effects on elderly mortality in South Korea using the temperature deviation index. International journal of biometeorology, v. 61, n. 7, p. 1291–1298, 2017. https://pubmed.ncbi.nlm.nih.gov/28229222/. Acesso em: 02 fev. 2022.
CHOI, H. M. et al. Temperature-mortality relationship in North Carolina, USA: Regional and urban-rural differences. The Science of the total environment, v.787, p. 147672, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0048969721027431. Acesso em: 02 fev. 2022.
CRAIG, M. H. et al. Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part I. the impact of climatic factors. Tropical Medicine And International Health, [S.L.], v. 9, n. 12, p. 1247-1257, dez. 2004. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3156.2004.01340.x. Acesso em: 15 jan. 2022.
DANG, T. A. T. et al. Short-term effects of temperature on hospital admissions for acute myocardial infarction: A comparison between two neighboring climate zones in Vietnam. Environmental research, v. 175, p. 167–177, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31128426/. Acesso em: 12 mar. 2022.
DANG, T. N. et al. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009-2013. Global health action, v. 9, p. 28738, 2016. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26781954/. Acesso em: 23 fev. 2022.
DAVÍDKOVOVÁ, H. et al. Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases. BMC public health, v. 14, n. 480, 2014. Disponível em: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-480. Acesso em: 10 mar. 2022.
DELAHOY, M. J. et al. Meteorological factors and childhood diarrhea in Peru, 2005–2015: a time series analysis of historic associations, with implications for climate change. Environmental Health, v. 20, n. 22, 2021. Disponível em: https://ehjournal.biomedcentral.com/articles/10.1186/s12940-021-00703-4. Acesso em: 18 jan. 2022.
DIXON, P. G. et al. Association of weekly suicide rates with temperature anomalies in two different climate types. International journal of environmental research and public health, v. 11, n. 11, p. 11627–11644, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245634/. Acesso em: 3 mar. 2022.
EHELEPOLA, N. D. B.; ARIYARATNE, K.; JAYARATNE, A. The association between local meteorological changes and exacerbation of acute wheezing in Kandy, Sri Lanka. Global health action, v. 11, n. 1, p. 1482998, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29912647/. Acesso em: 16 mar. 2022.
EVANGELOPOULOS, D. et al. Does climatic zone of birth modify the temperature-mortality association of London inhabitants during the warm season? A time-series analysis for 2004-2013. Environmental research, v. 193, p. 110357, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33131709/. Acesso em: 21 fev. 2022.
GREEN, D. et al. Differential Effects of Temperature Extremes on Hospital Admission Rates for Respiratory Disease between Indigenous and Non-Indigenous Australians in the Northern Territory. International journal of environmental research and public health, v. 12, n. 12, p. 15352–15365, 2015. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26633456/. Acesso em: 15 mar. 2022.
GRONLUND, C. J. et al. Vulnerability to the Cardiovascular Effects of Ambient Heat in Six US Cities: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology, v. 29, n. 6, p. 756–764. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30113342/. Acesso em: 12 mar. 2022.
HA, S. et al. Ambient Temperature and Stillbirth: A Multi-Center Retrospective Cohort Study. Environmental health perspectives, v. 125, n. 6, p. 067011, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28650842/. Acesso em: 6 mar. 2022.
HAJAT, S. et al. “The Effect of Ambient Temperature on Type-2-Diabetes: Case-Crossover Analysis of 4+ Million GP Consultations across England”. Environmental Health, vol. 16, no 1, dez. de 2017, p. 73. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506566/. Acesso em: 12 abr. 2022.
HANSEN, A. et al. The effect of heat waves on mental health in a temperate Australian city. Environmental Health Perspectives, v. 116, n. 10, p. 1369-75, 2008. Disponível em: https://pubmed.ncbi.nlm.nih.gov/18941580/. Acesso em: 2 mar. 2022.
HASHIZUME, M. et al. Association between climate variability and hospital visits for non-cholera diarrhoea in Bangladesh: effects and vulnerable groups. International Journal of Epidemiology, v. 36, p. 1030–1037, 2007. Disponível em: https://academic.oup.com/ije/article/36/5/1030/775803. Acesso em: 18 jan. 2022.
HEANEY, C. D. et al. Relations of peri-residential temperature and humidity in tick-life-cycle-relevant time periods with human Lyme disease risk in Pennsylvania, USA. The Science of the total environment, v. 795, n.148697, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0048969721037694?via%3Dihub. Acesso em: 19 jan. 2022.
HO, H. C. et al. Delineation of Spatial Variability in the Temperature-Mortality Relationship on Extremely Hot Days in Greater Vancouver, Canada. Environmental health perspectives, v. 125, n. 1, p. 66–75, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27346526/. Acesso em: 22 fev. 2022.
HOLOPAINEN, J.; HELAMA, S.; PARTONEN, T. Does diurnal temperature range influence seasonal suicide mortality? Assessment of daily data of the Helsinki metropolitan area from 1973 to 2010. International Journal of Biometeorology, v. 58, n. 6, p. 1039–1045, 2014. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23775128/. Acesso em: 3 mar. 2022.
HOPSTOCK, L. A. et al. The effect of daily weather conditions on myocardial infarction incidence in a subarctic population: the Tromsø Study 1974-2004. Journal of epidemiology and community health, v. 66, n. 9, p. 815–820, 2012. Disponível em: https://pubmed.ncbi.nlm.nih.gov/21652517/. Acesso em: 12 mar. 2022.
HU, J. et al. The short-term effects of outdoor temperature on blood pressure among children and adolescents: finding from a large sample cross-sectional study in Suzhou, China. International Journal of Biometeorology, v. 63, p. 381–391, 2019. Disponível em: https://link.springer.com/article/10.1007/s00484-019-01671-8. Acesso em: 10 mar. 2022.
HU, K. et al. Evidence for Urban-Rural Disparity in Temperature-Mortality Relationships in Zhejiang Province, China. Environmental health perspectives, v. 127, n. 3, p. 37001, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30822387/. Acesso em: 22 fev. 2022.
HUANG, C. C. et al. Assessment of the Relationship Between Ambient Temperature and Home Blood Pressure in Patients From a Web-Based Synchronous Telehealth Care Program: Retrospective Study. Journal of medical Internet research, v. 21, n. 3, p. e12369, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30829574/. Acesso em: 10 mar. 2022.
HUANG, M. et al. Acute associations between heatwaves and preterm and early-term birth in 50 US metropolitan areas: a matched case-control study. Environmental health: a global access science source, v. 20, n. 1, p. 47, 2021. Disponível em: https://ehjournal.biomedcentral.com/articles/10.1186/s12940-021-00733-y. Acesso em: 6 mar. 2022.
HUG, L. et al. A neglected tragedy the global burden of stillbirths: report of the UN inter-agency group for child mortality estimation, 2020. United Nations Children’s Fund (2020). Disponível em: https://www.who.int/publications/m/item/a-neglected-tragedy-the-global-burden-of-stillbirths. Acesso em: 5 mar. 2022.
INGOLE, V. et al. Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study. International journal of biometeorology, v. 61, n. 10, p. 1797–1804, 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643356/. Acesso em: 02 fev. 2022.
IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In: MASSON-DELMOTTE, V. et al. (eds.). Global Warming of 1.5°C. Cambridge University Press, Cambridge, pp. 3-24, 2018. Disponível em: https://www.ipcc.ch/sr15/chapter/spm/. Acesso em: 01 jan. 2022.
IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In: MASSON-DELMOTTE, V. et al. (eds.). Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, pp. 3-32, 2021. Disponível em: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. Acesso em: 10 jan. 2022.
JUNKKA, J. et al. Climate vulnerability of Swedish newborns: Gender differences and time trends of temperature-related neonatal mortality, 1880-1950. Environmental research, v. 192, p. 110400, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33129863/. Acesso em: 5 mar. 2022.
JURI, D. J. M. et al. “Malaria Transmission in Two Localities in North-Western Argentina”. Malaria Journal, vol. 8, no 1, dezembro de 2009, p. 18. Disponível em: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-8-18. Acesso em: 13 jan. 2022.
KABIR, A. F. et al. Effect of Ambient Temperature on Daily Nebulized Asthma Hospital Visits in a Tropical City of Dhaka, Bangladesh. International journal of environmental research and public health, v. 18, n. 3, p. 890, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33498592/. Acesso em: 15 mar. 2022.
KANNER, J. et al. Ambient temperature and stillbirth: Risks associated with chronic extreme temperature and acute temperature change. Environmental research, v. 189, p. 109958, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32980027/. Acesso em: 5 mar. 2022.
KARLSSON, L.; LUNDEVALLER, E.; SCHUMANN, B. The association between cold extremes and neonatal mortality in Swedish Sápmi from 1800 to 1895. Global health action, v. 12, n. 1, p. 1623609, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31232229/. Acesso em: 5 mar. 2022.
KIM, J.; LEE, J. Y. Synoptic approach to evaluate the effect of temperature on pediatric respiratory disease-related hospitalization in Seoul, Korea. Environmental research, v. 178, p. 108650, 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31450148/. Acesso em: 15 mar. 2022.
KIM, Y et al. Suicide and Ambient Temperature in East Asian Countries: A Time-Stratified CaseCrossover Analysis. Environmental health perspectives, v. 124, n. 1, p. 75–80, 2016. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26069051/. Acesso em: 3 mar. 2022.
LE TERTRE, A. et al. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, v. 17, n. 1, p. 75–79. Disponível em: https://journals.lww.com/epidem/Fulltext/2006/01000/Impact_of_the_2003_Heatwave_on_All_Cause_Mortality.14.aspx. Acesso em: 22 fev. 2022.
LI, S. et al. Exploring associations of maternal exposure to ambient temperature with duration of gestation and birth weight: a prospective study. BMC Pregnancy Childbirth, v. 18, n. 513, 2018. Disponível em: https://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/s12884-018-2100-y. Acesso em: 6 mar. 2022.
LIN, Yu-Kai et al. Mortality and morbidity associated with ambient temperatures in Taiwan. The Science of the total environment, v.651, p. 210-217, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0048969718336052. Acesso em: 21 fev. 2022.
LÓPEZ-BUENO, J. A. et al. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid. Environmental research, v. 195, n. 110892, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33607097/. Acesso em: 22 fev. 2022.
LUBER, G. et al. Chapter 9: Human Health. Climate Change Impacts in the United States: The Third National Climate Assessment, 2014. Global Change Research Program, p. 220-256. Disponível em: https://nca2014.globalchange.gov/downloads/low/NCA3_Full_Report_09_Human_Health_LowRes.pdf. Acesso em: 05 jan. 2022.
LUO, Q. et al. A systematic review and meta-analysis of the association between daily mean temperature and mortality in China. Environmental Research, [S.L.], v. 173, p. 281-299, jun. 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0013935119301720. Acesso em: 12 jan. 2022.
MATHEW, S. et al. Examining the Effects of Ambient Temperature on Pre-Term Birth in Central Australia. International journal of environmental research and public health, v. 14, n. 2, p. 147, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334701/. Acesso em: 6 mar. 2022.
MISSLIN, R. et al. Estimating air temperature using MODIS surface temperature images for assessing Aedes aegypti thermal niche in Bangkok, Thailand. Environmental monitoring and assessment, v. 190, n. 537, 2018. Disponível em: https://link.springer.com/article/10.1007/s10661-018-6875-0. Acesso em: 20 jan. 2022.
MOHAMMADI, D. et al. Environmental extreme temperature and daily preterm birth in Sabzevar, Iran: a time-series analysis. Environmental health and preventive medicine, v. 24, n. 1, p. 5, 2019. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320631/. Acesso em: 6 mar. 2022.
OMUMBO, J. A. et al. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malaria journal, v. 10, n. 12, 2011. Disponível em: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-10-12. Acesso em: 16 jan. 2022.
OPAS (Organização Pan-Americana da Saúde). Agenda para as Américas sobre Saúde, Meio Ambiente e Mudança Climática: 2021–2030, 94 p., Peru, 2022. Disponível em: https://iris.paho.org/handle/10665.2/55385. Acesso em: 05 fev. 2023.
OPS (Organización Panamericana de la Salud). La carga de los trastornos mentales en la Región de las Américas. Washington, D.C.: OPS; 2018. Disponível em: https://iris.paho.org/bitstream/handle/10665.2/49578/9789275320280_spa.pdf?sequence=9#:~:text=En%20la%20Regi%C3%B3n%20de%20las%20Am%C3%A9ricas%2C%20una%20proporci%C3%B3n%20considerable%20de,presentan%20tasas%20de%20mortalidad%20altas. Acesso em: 10 out. 2021.
ORRU, H.; ÅSTRÖM, D. O. Increases in external cause mortality due to high and low temperatures: evidence from northeastern Europe. International journal of biometeorology, v. 61, n. 5, p. 963–966, 2017. Disponível em: https://link.springer.com/article/10.1007/s00484-016-1270-4. Acesso em: 02 fev. 2022.
PAN, R. Temporal trends of the association between extreme temperatures and hospitalisations for schizophrenia in Hefei, China from 2005 to 2014. Occupational and environmental medicine, v. 78, n. 5, p. 364-370, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33737328/. Acesso em: 3 mar. 2022.
PASCAL, M. et al. Heat and cold related mortality in 18 French cities. Environment international, v. 121, p. 189–198, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30216771/. Acesso em: 21 fev. 2022.
PEARCE, J.L. et al. Exploring the influence of short-term temperature patterns on temperature-related mortality: a case-study of Melbourne, Australia. Environmental Health, v. 15, n. 107, 2016. Disponível em: https://ehjournal.biomedcentral.com/articles/10.1186/s12940-016-0193-1. Acesso em: 02 fev. 2022.
PÉRES, W. E. et al. The Association between Air Temperature and Mortality in Two Brazilian Health Regions. Climate, v. 8, n. 1, p. 16, 2020. Disponível em: https://www.mdpi.com/2225-1154/8/1/16. Acesso em: 22 fev. 2022.
PETKOVA, E. P.et al. Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple Population, Adaptation, and Climate Scenarios. Environmental health perspectives, v. 125, n. 1, p. 47–55, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226693/. Acesso em: 02 fev. 2022.
PONJOAN, A. et al. Extreme diurnal temperature range and cardiovascular emergency hospitalizations in a Mediterranean region. Occupational and Environmental Medicine, v. 78, p. 62-68, 2021. Disponível em: https://oem.bmj.com/content/78/1/62. Acesso em: 12 mar. 2022.
QI, X.; TONG, S.; HU, W. Preliminary spatiotemporal analysis of the association between socio-environmental factors and suicide. Environmental health, v. 8, n. 1, p. 16, 2009. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19796389/. Acesso em: 2 mar. 2022.
RUUHELA, R.; HYVÄRINEN, O.; JYLHÄ, K. Regional Assessment of Temperature-Related Mortality in Finland. International Journal Environmental Research and Public Health, v. 15, n. 406, 2018. Disponível em: https://www.mdpi.com/1660-4601/15/3/406. Acesso em: 22 fev. 2022.
SCIELO. Scientific Electronic Library Online. 2021. Disponível em: https://www.scielo.br/. Acesso em: 30 ago. 2021.
SCOVRONICK, N. et al. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environmental research, v. 161, p. 229–235, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29161655/. Acesso em: 23 fev. 2022.
SHAO, Y. et al. The Effects of Temperature on Dynamics of Psychiatric Outpatients. Frontiers in psychiatry, v. 11, 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750496/. Acesso em: 2 mar. 2022.
SIDDAWAY, A. P.; WOOD, A. M.; HEDGES, L. V. How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, v. 70, n. 1, p. 747–770, 2019. Acesso em: 12 maio 2022.
SLOAN, C. et al. The impact of temperature and relative humidity on spatiotemporal patterns of infant bronchiolitis epidemics in the contiguous United States. Health & place, v. 45, p. 46–54. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28285184/. Acesso em: 16 mar. 2022.
STIVANELLO, E. et al. Mental Health Disorders and Summer Temperature-Related Mortality: A Case Crossover Study. International Journal of Environmental Research and Public Health, v. 17, n. 23, p. 9122, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33297344/. Acesso em: 2 mar. 2022.
STRAND, L. B.; BARNETT, A. G.; TONG, S. The influence of season and ambient temperature on birth outcomes: a review of the epidemiological literature. Environmental Research, [S.L.], v. 111, n. 3, p. 451-462, 2011. Disponível em: https://www.sciencedirect.com/science/article/pii/S0013935111000545. Acesso em: 12 jan. 2022.
SUN, S. et al. Ambient Temperature and Markers of Fetal Growth: A Retrospective Observational Study of 29 Million U.S. Singleton Births. Environmental health perspectives, v. 127, n. 6, p. 67005. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31162981/. Acesso em: 6 mar. 2022.
TARANTO, M. F. R. et al. Dengue outbreaks in Divinopolis, south-eastern Brazil and the geographic and climate distribution of Aedes albopictus and Aedes aegypti in 2011 – 2012. Tropical Medicine & International Health, v. 20, p. 77-88, 2014. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/tmi.12402. Acesso em: 20 jan. 2022.
TAWATSUPA, B. et al. The association between temperature and mortality in tropical middle income Thailand from 1999 to 2008. International journal of biometeorology, v. 58, n. 2, p. 203–215, 2014. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23100101/. Acesso em: 21 fev. 2022.
THIAM, S. et al. Association between Childhood Diarrhoeal Incidence and Climatic Factors in Urban and Rural Settings in the Health District of Mbour, Senegal. International journal of environmental research and public health, v.14, n. 9, p. 1049. Disponível em: https://www.mdpi.com/1660-4601/14/9/1049. Acesso em: 18 jan. 2022.
TRANG, P. M et al. Seasonality of hospital admissions for mental disorders in Hanoi, Vietnam. Global health action, v. 9, p. 32116, 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002036/. Acesso em: 3 mar. 2022.
TRONIN, A. et al. Study of the Relationship between the Average Annual Temperature of Atmospheric Air and the Number of Tick-Bitten Humans in the North of European Russia. International Journal of Environmental Research and Public Health, v. 17, n. 8006, 2020. Disponível em: https://www.mdpi.com/1660-4601/17/21/8006. Acesso em: 19 jan. 2022.
TULADHAR, R. et al. Climatic factors influencing dengue incidence in an epidemic area of Nepal. BMC research notes, v. 12(1), n. 131, 2019. Disponível em: https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-019-4185-4. Acesso em: 20 jan. 2022.
URBAN, A. et al. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic-A Comparison with Previous Heat Waves. International journal of environmental research and public health, v. 14, n. 12, p. 1562, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29236040/. Acesso em: 21 fev. 2022.
WANG, X. et al. Acute impacts of extreme temperature exposure on emergency room admissions related to mental and behavior disorders in Toronto, Canada. Journal of Affective Disorders, v. 155, p. 154–161, 2014. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24332428/. Acesso em: 3 mar. 2022.
WANG, X. et al. Impact of temperature variability on childhood allergic rhinitis in a subtropical city of China. BMC public health, v. 20, n. 1, p. 1418, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32943035/. Acesso em: 15 mar. 2022.
WEN, L. Y. et al. The association between diurnal temperature range and childhood bacillary dysentery. International journal of biometeorology, v. 60, n. 2, p. 269–276, 2015. Disponível em: https://link.springer.com/article/10.1007/s00484-015-1023-9. Acesso em: 18 jan. 2022.
WHO (World Health Organization). International statistical classification of diseases and related health problems: 10th revision. 5. ed. France, 2016. Disponível em: https://icd.who.int/browse10/Content/statichtml/ICD10Volume2_en_2019.pdf. Acesso em: 10 out. 2021.
WHO (World Health Organization). World health statistics 2022: monitoring health for the SDGs, sustainable development goals. Geneva, 2022. Disponível em: https://cdn.who.int/media/docs/default-source/gho-documents/world-health-statistic-reports/worldhealthstatistics_2022.pdf. Acesso em: ago. 2022.
WHO (World Health Organization). Atlas of health and climate. Geneva, 64 p., 2012. Disponível em: https://www.who.int/publications/i/item/9789241564526. Acesso em: 05 jan. 2022.
WILKER, E. H. et al. Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Environmental health perspectives, v. 120, n. 8, p. 1083–1087. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22588803/. Acesso em: 10 mar. 2022.
XIAO, D. et al. Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China. Malaria Journal, v. 9, n. 185, 2010. Disponível em: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-9-185. Acesso em: 16 jan. 2022.
XU, Z. et al. Impact of ambient temperature on children's health: a systematic review. Environmental Research, [S.L.], v. 117, p. 120-131, ago. 2012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0013935112001983. Acesso em: 12 jan. 2022.
XUE, T. et al. Declines in mental health associated with air pollution and temperature variability in China. Nature communications, v. 10, n. 1, 2019. Disponível em: https://www.nature.com/articles/s41467-019-10196-y. Acesso em: 2 mar. 2022.
YAMAZAKI, S.; MICHIKAWA, T. Association between high and low ambient temperature and out-of-hospital cardiac arrest with cardiac etiology in Japan: a case-crossover study. Environmental health and preventive medicine, v. 22, n. 1, p. 60, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29165155/. Acesso em: 10 mar. 2022.
YARKA, S. et al. Suicide behavior and meteorological characteristics in hot and arid climate. Environmental Research, v. 184, p. 109314, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32187563/. Acesso em: 3 mar. 2022.
YE, X. et al. Ambient Temperature and Morbidity: a review of epidemiological evidence. Environmental Health Perspectives, [S.L.], v. 120, n. 1, p. 19-28, jan. 2012. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261930/. Acesso em: 12 jan. 2022.
ZHANG, K.; CHEN, TH.; BEGLEY, C. E. Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas. Environmental Health, v. 14, n. 11, 2015. Disponível em: https://ehjournal.biomedcentral.com/articles/10.1186/1476-069X-14-11. Acesso em: 22 fev. 2022.
ZHANG, S. et al - The effect of temperature on cause-specific mental disorders in three subtropical cities: A case-crossover study in China. Environment International, v. 143, p. 105938, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0160412020318936. Acesso em: 2 mar. 2022.
ZHAO, Q. et al. Impact of ambient temperature on clinical visits for cardio-respiratory diseases in rural villages in northwest China. The Science of the total environment, v. 612, p. 379–385, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28858748/. Acesso em: 10 mar. 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Renata Miguel da Silva, Aline S. Procopio
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.