Efeito da suplementação de ômega 3 isolado ou associado em pacientes com doença de Alzheimer: uma revisão sistemática da literatura científica

Autores

  • Christianne Rosiak Gonzaga dos Santos Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Camila Kellen de Souza Cardoso Faculdade de Medicina da Universidade Federal de Goiás (UFG)

DOI:

https://doi.org/10.34019/1982-8047.2019.v45.27797

Palavras-chave:

Cérebro, Doença de Alzheimer, Ácidos Docosa-Hexaenoicos Ácidos Graxos Insaturados

Resumo

Introdução: O envelhecimento da população está associado ao aumento da incidência da doença de Alzheimer (DA), a qual causa graves complicações ao paciente. Os nutrientes imunomoduladores, como os ácidos graxos poli-insaturados (PUFAs) da série ômega 3 (w-3) podem auxiliar na melhora do quadro clínico da DA. Objetivo: Analisar o efeito da suplementação de PUFAs w-3 isolado ou associado na população idosa com DA. Material e métodos: Trata-se de uma revisão sistemática de literatura científica nas bases de dados Pubmed e Science Direct, que englobou ensaios clínicos em idosos com provável e/ou comprovado diagnóstico de DA e suplementados com PUFAS w-3 isolado ou associado, no idioma inglês e com os seguintes descritores em saúde (DECs): brain, Alzheimer’s disease, fatty docosahexaenoic acid (DHA), polyunsaturated fatty acids (PUFA), older and elderly people e termo de pesquisa: eicosapentaenoic acid (EPA). O recorte temporal das publicações foi delimitado de 2006 a 2017. Resultados: foram selecionados 10 ensaios clínicos, cuja suplementação de w-3 favoreceu menor declínio no score de miniexame de estado mental (MEEM), retardo da disfunção, melhora no domínio de agitação do inventário neuropsiquiátrico (NPI) e melhora dos sintomas depressivos pela Escala de Depressão de Montgomery-Asberg (MADRS). Foram observadas mudanças significativas como aumento de apetite, peso, índice de massa corporal (IMC), EPA e DHA, além de reduções nos níveis séricos de albumina, ácido araquidônico (AA), ácido mirístico, interleucina-6 (IL- 6), interleucina 1 ß (IL-1ß) e fator estimulante de colônias de granulócitos (G-CSF) e redução na liberação de prostaglandina F2α (PGF2α). Foram relatadas alterações positivas em alguns genes e em outros, redução de sua expressão, além de hipometilação de importantes genes. Conclusão: A suplementação de PUFAs w-3 exerceu efeito positivo em pacientes com DA grau leve a moderado.

Downloads

Não há dados estatísticos.

Referências

World Health Organization (WHO). World report on ageing and health. Geneve: WHO; 2015.

United Nations, Department of Economic and Social Affairs, Population Division. World population ageing. New York: United Nations; 2015.

Scazufca M, Cerqueira A, Menezes PR, Prince M, Vallada HP, Miyazaki MCOS et al. Investigações epidemiológicas sobre demência nos países em desenvolvimento. Revsp. 2002; 36(1):6. doi:10.1590/S0034-89102002000700018.

Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry. 2011; 72(2):126-33. doi: 10.4088/JCP.10m06382oli.

Alzheimer’s Disease International (ADI). Relatório sobre a doença de Alzheimer no mundo 2009: resumo executivo. Illinois: 2009.

Tosto G, Monsell SE, Hawes SE, Bruno G, Mayeux R. Progression of extrapyramidal signs in Alzheimer's disease: clinical and neuropathological correlates. J Alzheimers Dis. 2015; 49(4):1085-93. doi: 10.3233/JAD-150244.

Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018; 131(1):87-101. doi: 10.1016/j.phrs.2018.03.010.

Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015; 77(1):43-51. doi: 10.1016/j.biopsych.2014.05.006.

Taylor CA, Greenlund SF, McGuire LC, Lu H, Croft JB. Deaths from Alzheimer’s disease: United States, 1999-2014. MMWR Morb Mortal Wkly Rep. 2017; 66(1):521-6. doi: 10.15585/mmwr.mm6620a1.

Bua X-L, Jiaoa S-S, Lianb Y, Wanga Y-J. Perspectives on the tertiary prevention strategy for Alzheimer’s disease. Curr Alzheimer Res. 2016; 13(3):307-16. doi: 10.2174/1567205013666151215110114.

Anand R, Gill K D, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Int J Neuropharmacol. 2014; 76(1):27-50. doi: 10.1016/j.neuropharm.2013.07.004.

Freund-Levi Y, Eriksdotter-Jönhagen M, Cederholm T, Basun H, Faxén-Irving G, Garlind A et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: omegAD study: a randomized double-blind trial. Arch Neurol. 2006; 63(10):1402-8.

Karimi M, Vedin I, Freund-Levi Y, Basun H, Faxén-Irving, Eriksdotter M et al. DHA-rich n–3 fatty acid supplementation decreases dna methylation in blood leukocytes: the omegAD study. Am J Clin Nutr. 2017; 106(4):1157-65. doi: 10.3945/ajcn.117.155648.

Vedin I, Cederholm T, Freund-Levi Y, Basun H, Garlind A, Irving GF et al. Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. PLos One. 2012; 7(4): e35425. doi: 10.1371/journal.pone.0035425.

Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications. Int J Devl Neuroscience. 2000; 18(1):383-99.

Mc Namara RK, Asch RH, Lindquist DM, Krikorian R. Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: an update on neuroimaging findings. PLEFA. 2018; 136(1):23-34. doi:10.1016/j.plefa.2017.05.001.

Hashimoto K. Role of soluble epoxide hydrolase in metabolism of pufas in psychiatric and neurological disorders. Front Pharmacol. 2019; 10(1):36. doi: 10.3389/fphar.2019.00036.

Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacol Rev. 2018; 70(1):12-38. doi: 10.1124/pr.117.014092.

Freund-Levi Y, Basun H, Cederholm T, Faxén-Irving G, Garlind A, Grut M et al. Omega-3 supplementation in mild to moderate Alzheimer's disease: effects on neuropsychiatric symptoms. Int J Geriatr Psychiatry. 2008; 23(2):161-9. doi: 10.1002/gps.1857. PMID: 17582225.

Irving GF, Freund-Levi Y, Eriksdotter-Jönhagen M, Basun H, Brismar K, Hjorth E et al. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer's disease: the omega-3 Alzheimer's disease study. J Am Geriatr Soc. 2009; 57(1):11-7. doi: 10.1111/j.1532-5415.2008.02055. x.

Vedin I, Cederholm T, Freund-Levi Y, Basun H, Hjorth E, Irving GF et al. Reduced prostaglandin F release from blood mononuclear leukocytes after oral supplementation of ω3 fatty acids: the OmegAD study. J Lipid Res. 2010; 51(5):1179-85. doi: 10.1194/jlr.M002667.

Freund-Levi Y, Vedin I, Cederholm T, Basun H, Faxén-Irving G, Eriksdotter M et al. J Intern Med. 2014; 275(4):428-36. doi: 10.1111/joim.12166.

Freund-Levi Y, Vedin I, Hjorth E, Basun H, Faxén Irving G, Schultzberg M et al. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer's disease: the omegAD study. J Alzheimers Dis. 2014; 42(3):823-31. doi: 10.3233/JAD-132042. PMID: 24934544.

Wang X, Hjorth E, Vedin I, Eriksdotter M, Freund-Levi Y, Wahlund LO et al. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. J Lipid Res. 2015; 56(3):674-81. doi: 10.1194/jlr. P055418.

Eriksdotter M, Vedin I, Falahati F, Freund-Levi Y, Hjorth E, Faxén-Irving G et al. Plasma fatty acid profiles in relation to cognition and ender in Alzheimer's disease patients during oral omega-3 fatty acid supplementation: the omegAD study. J Alzheimers Dis. 2015; 48(3):805-12. doi: 10.3233/JAD-150102.

Baranowska-Bosiacka I, Olszowski T, Gutowska I, Korbecki J, Rebacz-Maron E, Barczak K et al. Fatty acid levels alterations in THP-1 macrophages cultured with lead (Pb). J Trace Elem Med Biol. 2019; 52(1):222-31. doi: 10.1016/j.jtemb.2019.01.003.

Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M et al. Imaging neuroinflammation in Alzheimer disease with radiolabeled arachidonic acid and pET. J Nucl Med. 2008; 49(9): 1414-21. doi:10.2967/jnumed.107.049619.

Lu Y, Nguyen PH, Sterpone F, Salsbury Jr FR, Derreumaux P. Amyloid-β (29-42) dimeric conformations in membranes rich in omega-3 and omega-6 polyunsaturated fatty acids. J Phys Chem B. 2019; 123(12):2687-96. doi: 10.1021/acs.jpcb.9b00431.

Zárate R, El Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med. 2017; 6(1):25. doi: 10.1186/s40169-017-0153-6.

Interim Summary of Conclusions and Dietary Recommendations on Total Fat & Fatty Acids. Joint FAO/WHO expert consultation on fats and fatty acids in human nutrition. 2008. [citado em 2008 dezembro] Disponível em: http://www.fao.org/ag/agn/nutrition/docs/Fats%20and%20Fatty%20Acids%20Summary.pdf.

Lundová T, Stambergová H, Zemanová L, Svobodová M, Havránková J et al. Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties. Mol Cell Biochem. 2016; 411(1-2):35-42. doi: 10.1007/s11010-015-2566-0.

Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993; 90(5):1977-81.

Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neurosci Biobehav Rev. 2013; 37(8):1322-35. doi: 10.1016/j.neubiorev.2013.05.006.

Ishibashi T, Yokota T, Satoh Y, Ichii M, Sudo T, Doi Y et al. Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis. Biochem Biophys Res Commun. 2018; 495(3):2338-43. doi: 10.1016/j.bbrc.2017.12.117.

Huang YA, Zhou B, Wernig M, Südhof TC. ApoE2, apoe3, and apoe4 differentially stimulate app transcription and Aβ secretion. Cell. 2017; 26;168(3):427-41. e21. doi: 10.1016/j.cell.2016.12.044.

Kutok JL, Yang X, Folkerth R, Adra CN. Characterization of the expression of HTm4 (MS4A3), a cell cycle regulator, in human peripheral blood cells and normal and malignant tissues. J Cell Mol Med. 2011; 15(1):86-93. doi: 10.1111/j.1582-4934.2009.00925. x.

Vance RE. The NAIP/NLRC4 Inflammasomes. Curr Opin Immunol. 2015; 84-89. doi: 10.1016/j.coi.2015.01.010.

Ellen TP, Ke Q, Zhang P, Costa M. NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis. 2008; 29(1):2-8.

Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan. MicroRNAs: the next generation therapeutic targets in human diseases. Theranostics. 2013; 3(12):930-42. doi: 10.7150/thno.7026.

Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63. Exp Cell Res. 2009; 315(9):1584-92. doi: 10.1016/j.yexcr.2008.09.020.

Naguib A, Sandmann T, Yi F, Watts RJ, Lewcock JW, Dowdle WE. SUPT4H1 depletion leads to a global reduction in RNA. Cell Rep. 2019; 26(1):45-53. doi: 10.1016/j.celrep.2018.12.004.

Yin RH, Yu JT, Tan L. The role of SORL1 in Alzheimer's disease. Mol Neurobiol. 2015; 51(3):909-18. doi: 10.1007/s12035-014-8742-5.

Bertram L, Tanzi RE. The genetics of Alzheimer's disease. Prog Mol Biol Transl Sci. 2012; 107(1):79-100. doi: 10.1016/B978-0-12-385883-2.00008-4.

Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F et al. Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol. 2010; 90(4):498-510. doi: 10.1016/j.pneurobio.2010.01.002.

Liu X, Jiao B, Shen L. The epigenetics of Alzheimer’s disease: factors and therapeutic implications. Front Genet. 2018; 9(1):579. doi: 10.3389/fgene.2018.00579.

Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol. 2008; 86(4):305-41. doi: 10.1016/j.pneurobio.2008.10.001.

Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D et al. Global changes in DNA methylation in Alzheimer's disease peripheral blood mononuclear cells. Brain Behav Immun. 2015; 45(1):139-44. doi: 10.1016/j.bbi.2014.11.002.

Mrak RE, Griffin WS. Potential inflammatory biomarkers in Alzheimer's disease. J Alzheimers Dis. 2005; 8(4):369-75. PMID: 16556968.

Laske C, Stellos K, Stransky E, Leyhe T, Gawaz M. Decreased plasma levels of granulocyte-colony stimulating factor (G-CSF) in patients with early Alzheimer's disease. J Alzheimers Dis. 2009; 17(1):115-23. doi: 10.3233/JAD-2009-1017.

Sirin FB, Kumbul Doğuç D, Vural H, Eren I, Inanli I, Sütçü R et al. Plasma 8-isoPGF2α and serum melatonin levels in patients with minimal cognitive impairment and Alzheimer disease. Turk J Med Sci. 2015; 45(5):1073-7.

Casadesus G, Smith MA, Basu S, Hua J, Capobianco DE, Siedlak SL et al. Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener. 2007; 22(1):2:2. doi: 10.1186/1750-1326-2-2.

Kim JY, Lee JW, Youn YJ, Ahn MS, Ahn SG, Yoo BS et al. Urinary levels of 8-iso-prostaglandin F2α and 8-hydroxydeoxyguanine as markers of oxidative stress in patients with coronary artery disease. Korean Circ J. 2012; 42(9):614-17.doi:10.4070/kcj.2012.42.9.614.

Yaffe K1 Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004; 292(18):2237-42. doi: 10.1001/jama.292.18.2237.

Rocha NP, Martins LCA, Teixeira AL, Reis HJ. Processo inflamatório e neuroimunomodulação na doença de Alzheimer: revisão de literatura. Rev Neurocienc. 2011; 19(2):300-13.

Gonçalves, MV (editor). Caracterização da resposta imune periférica na doença de Alzheimer. 2012. [citado em 2012] disponível em: https://estudogeral.sib.uc.pt/bitstream/10316/25142/1/Caracteriza%C3%A7%C3%A3o%20da%20Resposta%20Imune%20Perif%C3%A9rica%20na%20Doen%C3%A7a%20de%20Alzheimer_Milene%20Vieira%20Gon%C3%A7alves.pdf.

Shang S, Yang YM, Zhang H, Tian L, Jiang JS, Dong YB et al. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice. J Cereb Blood Flow Metab. 2016; 36(11):1978-91. doi:10.1177/0271678X16660983.

Patricò D. The neurobiology of isoprostanes and Alzheimer’s disease. Biochim Biophys Acta. 2010; 1801(8): 930-3.doi: 10.1016/j.bbalip.2010.01.009.

Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011; 477(7362):90-4. doi: 10.1038/nature10357.

Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982; 139(9):1136-9. doi: 10.1176/ajp.139.9.1136.

Garcia-Ptacek S, Eriksdotter M, Jelic V, Porta-Etessam J, Kåreholt I, Manzano Palomo S. Subjective cognitive impairment: towards early identification of Alzheimer disease. Neurología. 2016; 31(8):562-71. doi: 10.1016/j.nrl.2013.02.007.

Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al. A mutation in aap protects against Alzheimer's disease and age-related cognitive decline. Nature. 2012; 488(7409):96-9. doi: 10.1038/nature11283.

Prajapati KD, Sharma SS, Roy N. Current perspectives on potential role of albumin in neuroprotection. Rev Neurosci. 2011; 22(3):355-63. doi: 10.1515/RNS.2011.028.

Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014; 5(1):299. doi: 10.3389/fphys.2014.00299.

Besser LM1, Gill DP, Monsell SE, Brenowitz W, Meranus DH, Kukull W et al. Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord. 2014; 28(1):36-43. doi: 10.1097/WAD.0000000000000005.

Ikeda M, Brown J, Holland A, Fukuhara R, Hodges J. Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2002; 73(4):371-6. doi: 10.1136/jnnp.73.4.371.

Vidoni ED, Townley RA, Honea RA, Burns JM. Alzheimer disease biomarkers are associated with body mass index. Neurol. 2011; 77(21):1913-20. doi: 10.1212/WNL.0b013e318238eec1.

Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L et al. Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm. 2012; 119(7):789-97. doi: 10.1007/s00702-012-0797-8.

Ramos-Fernández E, Tajes M, Palomer E, Ill-Raga G, Bosch-Morató M, Guivernau B et al. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation. J Alzheimers Dis. 2014; 40(3):643-57. doi: 10.3233/JAD-130914.

Kai K, Hashimoto M, Amano K, Tanaka H, Fukuhara R, Ikeda M et al. Relationship between eating disturbance and dementia severity in patients with Alzheimer's disease. PLoS One. 2015; 10(8): e0133666. doi: 10.1371/journal.pone.0133666.

Brock F, Bettinelli LA, Dobner T, Stobbe JC, Pomatti G, Telles CT. Prevalence of hypoalbuminemia and nutritional issues in hospitalized elders. [citado em 2019 Maio] Rev Latino-Am Enfermagem. 2016; 24: e2736. Disponível em: http://www.scielo.br/pdf/rlae/v24/es_0104-1169-rlae-24-02736.pdf. doi: http://dx.doi.org/10.1590/1518-8345.0260.2736.

Casati M, Boccardi V, Ferri E, Bertagnoli L, Bastiani P, Ciccone S, et al. Vitamin E and Alzheimer’s disease: the mediating role of cellular aging. Aging Clin Exp Res. 2019. doi: 10.1007/s40520-019-01209-3.

Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011; 51(5):1000-13. doi: 10.1016/j.freeradbiomed.2011.05.017.

Direção-Geral da Saúde (DGS). Programa Nacional para a Promoção da Alimentação Saudável: Nutrição e doença de Alzheimer. Lisboa: DGS; 2015.

Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose – 2017. Arq Bras Cardiol. 2017; 109(2Supl.1):1-76.

Downloads

Publicado

2020-02-14

Como Citar

1.
Rosiak Gonzaga dos Santos C, de Souza Cardoso CK. Efeito da suplementação de ômega 3 isolado ou associado em pacientes com doença de Alzheimer: uma revisão sistemática da literatura científica. HU Rev [Internet]. 14º de fevereiro de 2020 [citado 28º de março de 2024];45(4):452-64. Disponível em: https://periodicos.ufjf.br/index.php/hurevista/article/view/27797

Edição

Seção

Artigos de Revisão Sistemática