Avaliação in silico e in vivo do perfil de metabolismo e toxicidade hepática de alcaloides β-carbolínicos sintéticos com prévia atividade antimalárica

Authors

DOI:

https://doi.org/10.34019/1982-8047.2023.v49.42343

Keywords:

Pharmacokinetics; Biochemistry; Cytochrome P-450; In silico modeling; Toxicity

Abstract

Introduction: Malaria continues to be a serious global public health problem, given the high annual morbidity and mortality rates. It is caused by protozoa of the genus Plasmodium, with P. falciparum responsible for most serious cases and deaths. Treatment is based on the use of drugs such as chloroquine or artemisinin-based combined therapy, however, the resistance of parasites to available drugs has become an alarming reality. Therefore, it is necessary to study and develop new drugs with antimalarial activity. Objective: To evaluate the metabolism and liver toxicity profile of three β-carboline alkaloids (1, 2 and 3) selected in a previous study, which showed antimalarial activity in vitro and in vivo. Material and methods: This is a study with a qualitative and quantitative approach with an experimental and analytical nature. In silico analysis of the metabolism and toxicity properties of alkaloids was carried out using the SMILES notation through the AdmetSAR 2.0 program. Biochemical analysis of aspartate aminotrasferase (AST) and alanine aminotransferase (ALT) was also carried out in the serum of mice of the C57BL/6 lineage, treated with alkaloids or chloroquine, with subsequent statistical analysis using ANOVA and Tukey tests. Results: In the in silico analysis, the prediction of low hepatotoxic potential for alkaloids 1 and 2 was observed, and this result was corroborated by the ALT dosage, which presented results similar to those of the control group. Alkaloid 3, however, presented contrasting data, indicating hepatotoxic potential in in silico prediction, however, low potential in in vivo analysis, with ALT values ​​also close to the control group. All alkaloids under study showed potential for drug interactions. Conclusion: All alkaloids showed promising metabolic and toxicity parameters and could be good adjuvants for malaria pharmacotherapy. However, these results need to be confirmed to proceed the molecules in preclinical studies.

Downloads

Download data is not yet available.

References

World Health Organization. World malaria report 2022 [Internet]. WHO: 2022 [citado em 2023 ago 25]. Disponível em: https://www.who.int/teams/global-malaria-programme.

Cortopassi WA, Gunderson E, Annunciato Y, Silva AES, Ferreira AS, Garcia Teles CB et al. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int J Parasitol Drugs Drug Resist. 2022; 20:121-8.

Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primers. 2017; 3:1-24.

World Health Organization. WHO Guidelines for malaria [Internet]. Geneva: WHO Global Malaria Programme; 2023 [citado em 2023 ago 25]. Disponível em: http://apps.who.int/bookorders.

Amelo W, Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges. Biomed Res Int. 2021; 2021:1-12.

Bellei JCB, Glanzmann N, Carpinter BA, Renhe DC, Marques CB, Azevedo MR et al. A simple quinoline salt derivative is active in vitro against Plasmodiumf alciparum asexual blood stages and inhibits the development of cerebral malaria in murine model. Chem Biol Interact. 2022; 355:109848.

Souza NB. Antimaláricos a partir de moléculas obtidas por síntese como análogos de cloroquina e compostos naftoquinoidais [Tese]. Belo Horizonte: Fundação Oswaldo Cruz; 2015.

Wicht KJ, Mok S, Fidock DA. Molecular mechanisms of drug resistance in plasmodium falciparum malaria. Annu Rev Microbiol. 2020; 74:431-54.

World Health Organization. WHO Guidelines for malaria [Internet]. Geneva: WHO Global Malaria Programme; 2021 [citado em 2023 ago 30] Disponível em: http://apps.who.int/bookorders.

Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008; 359(24):2619-20.

Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017; 41:34-48.

Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al. Artemisinin resistance in plasmodium falciparum malaria. N Engl J Med. 2009; 361(5):455-67.

Chapadense F, Machado RLD, Ventura AMRS, Áreas A, Machado RB, Viana GR et al. Plasmodium falciparum malarial parasites from Brazil lack artemisinin resistance-associated mutations in the kelch13 gene. Rev Soc Bras Med Trop. 2019; 52:1-4.

Frederich M, Tits M, Angenot L. Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg. 2008; 102(1):11-9.

Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorg Med Chem. 2009; 17:3229-56.

Passemar C, Saléry M, Soh PN, Linas MD, Ahond A, Poupat C et al. Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules. Phytomedicine. 2011; 18(13):1118-25.

Wright CW. Traditional antimalarials and the development of novel antimalarial drugs. J Ethnopharmacol. 2005; 100:67-71.

Alves FM, Bellei JCB, Barbosa CS, Duarte CL, Fonseca AL, Pinto ACS et al. Rational-based discovery of novel β-carboline derivatives as potential antimalarials: from in silico identification of novel targets to inhibition of experimental cerebral malaria. Pathogens. 2022; 11(12):1529.

Pereira DG. Importância do metabolismo no planejamento de fármacos. Quím Nova. 2007; 30(1):171-7.

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138:103-41.

Bertolami MC. Mecanismos de hepatotoxicidade. Arq Bras Cardiol. 2005; 85:25-7.

Lin JH, Lu AYH. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997; 49(4):403-449.

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012; 52(11):3099-105.

Lima VLE. Os fármacos e a quiralidade: uma breve abordagem. Quím Nova. 1997; 20(6):657-63.

Orlando RM. Importância farmacêutica de fármacos quirais. Rev Eletrônica Farm. 2007; 4(1):8-14.

Marinho JA. Avaliação in vitro e in vivo da atividade antiplasmodial e citotoxicidade de novos compostos derivados de 4-aminoquinolinas [Tese]. Juiz de Fora: Universidade Federal de Juiz de Fora; 2019.

Rendic S, Guengerich FP. Metabolism and interactions of chloroquine and hydroxychloroquine with human cytochrome P450 enzymes and drug transporters. Curr Drug Metab. 2020; 21(14):1127-35.

Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008; 9(4):310-22.

Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010; 20:277-81.

Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005; 44(8):797-814.

Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol. 2020; 16(9):809-22.

Cheng F, Yu Y, Zhou Y, Shen Z, Xiao W, Liu G et al. Insights into molecular basis of cytochrome P450 inhibitory promiscuity of compounds. J Chem Inf Model. 2011; 51(10):2482-95.

Araújo FTM. Estabelecimento de valores de referência para parâmetros hematológicos e bioquímicos e avaliação do perfil imunológico de linhagens de camundongos produzidas nos biotérios do Centro de Pesquisas René Rachou/FioCruz – Minas e do Centro de Criação de Animais de Laboratório/ FioCruz [Dissertação]. Belo Horizonte: Fundação Oswaldo Cruz; 2012.

Barbosa B de S, Praxedes ÉA, Lima MA, Pimentel MML, Santos FA, Brito PD et al. Perfil hematológico e bioquímico de camundongos da linhagem Balb-c. Acta Sci Vet. 2017; 45:1-5.

Marra F, Smolders EJ, El-Sherif O, Boyle A, Davidson K, Sommerville AJ et al. Recommendations for dosing of repurposed Covid-19 medications in patients with renal and hepatic impairment. Drugs R D. 2021; 21(1):9-27.

Yucha RW, He K, Shi Q, Cai L, Nakashita Y, Xia CQ et al. In vitro drug-induced liver injury prediction: criteria optimization of efflux transporter IC50 and physicochemical properties. Toxicol Sci. 2017; 157(2):487-99.

Gorki V, Walter NS, Singh R, Chauhan M, Dhingra N, Salunke DB et al. β-carboline derivatives tackling malaria: biological evaluation and docking analysis. ACS Omega. 2020; 5(29):17993-18006.

Melo MGD, Dória GAA, Serafini MR, Araújo AAS. Valores de referência hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério central da Universidade Federal de Sergipe. Sci Plena. 2013; 8(9):1-6.

Al-Salahy M, Shnawa B, Abed G, Mandour A, Al-Ezzi A. Parasitaemia and its relation to hematological parameters and liver function among patients malaria in abs, Hajjah, Northwest Yemen. Interdiscip Perspect Infect Dis. 2016; 2016:5954394.

Mizobuchi H, Fujii W, Isokawa S, Ishizuka K, Wang Y, Watanabe S et al. Exacerbation of hepatic injury during rodent malaria by myeloid-related protein 14. PLoS One. 2018; 13(6):1-25.

Misra D, Das S, Patnaik M, Singh S, Jena RK. Relationship of hepatic and renal dysfunction with haemorrheological parameters in Plasmodium falciparum malaria. J Assoc Physicians India. 2011; 59:552-6.

Published

2024-02-06

How to Cite

1.
Javert Pereira J, Soares da Silva Y, de Moura Alves F, Martins Bellei P, Ribeiro Viana GH, Katiani Gorza Scopel K, Pires de Andrade B, Corrêa Bezerra Bellei J. Avaliação in silico e in vivo do perfil de metabolismo e toxicidade hepática de alcaloides β-carbolínicos sintéticos com prévia atividade antimalárica . HU Rev [Internet]. 2024Feb.6 [cited 2024May15];49:1-8. Available from: https://periodicos.ufjf.br/index.php/hurevista/article/view/42343

Issue

Section

Artigos Originais