Aprendizado de Máquina Quântica para Monitoramento Estrutural
Estudos pioneiros
DOI:
https://doi.org/10.34019/2179-3700.2024.v24.46058Keywords:
Monitoramento de Integridade Estrutural, Aprendizado de Máquina Quântico, Detecção de danosAbstract
This paper proposes a novel method for Structural Health Monitoring (SHM) utilizing unsupervised Quantum Machine Learning (QML). The suggested process entails taking raw acceleration data, extracting characteristics from them, and embedding them into quantum states such that a quantum classifier can analyze them. Potential structural abnormalities are detected by evaluating an anomaly score function, which is derived via training the model with known intact situations and identifying variations from typical behaviors. Experimental implementations on a laboratory two-story frame to confirm the proposed framework, showing promising results in anomaly identification and quantification. This work establishes the groundwork for future investigations at the nexus of quantum computing and civil engineering through relevant experiments, analyses, and discussions, expanding the boundaries of SHM research.
Downloads
References
ALVES, Victor; CURY, Alexandre. A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements. Structural Control and Health Monitoring, v. 28, n. 7, p. e2748, 2021.
BAKER, J. S.; HOROWITZ, H.; RADHA, S. K.; FERNANDES, S.; JONES, C.; NOORANI, N.; SKAVYSH, V.; LAMONTAGNE, P.; SANDERS, B. C. Quantum variational rewinding for time series anomaly detection. arXiv preprint arXiv:2210.16438, 2022.
CORREA-JULLIAN, C.; COFRE-MARTEL, S.; SAN MARTIN, G.; LOPEZ DROGUETT, E.; DE NOVAES PIRES LEITE, G. ; COSTA, A. Exploring Quantum Machine Learning and feature reduction techniques for wind turbine pitch fault detection. Energies, v. 15, n. 8, p. 2792, 2022.
FINOTTI, R.; SILVA, C; OLIVEIRA, P.; BARBOSA, F.; CURY, A.; SILVA, R. Novelty detection on a laboratory benchmark slender structure using an unsupervised deep learning algorithm. Latin American Journal of Solids and Structures, v. 20, p. e512, 2023.
KAYE, Phillip; LAFLAMME, Raymond; MOSCA, Michele. An introduction to quantum computing. OUP Oxford, 2006.
KHAN, Mansoor A.; AMAN, Muhammad N.; SIKDAR, Biplab. Beyond Bits: A Review of Quantum Embedding Techniques for Efficient Information Processing. IEEE Access, 2024.
RYTTER, A. Vibrational based inspection of civil engineering structures. 1993. Tese de doutorado – Denmark: Department of Building Technology and Structural, Aalborg University, Aalborg, 1993.
TROCHUN, Y.; WANG, Z.; ROKOVYI, O.; PENG, G.; ALIENIN, O.; LAI, G.; GORDIENKO, Y.; STIRENKO, S. Hurricane damage detection by classic and hybrid classic-quantum neural networks. In: 2021 International Conference on Space-Air-Ground Computing (SAGC). IEEE, 2021. p. 152-156.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Victor Higino Meneguitte Alves, Alexandre Abrahão Cury, Raphael Gomes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.