Aprendizado de Máquina Quântica para Monitoramento Estrutural

Estudos pioneiros

Authors

DOI:

https://doi.org/10.34019/2179-3700.2024.v24.46058

Keywords:

Monitoramento de Integridade Estrutural, Aprendizado de Máquina Quântico, Detecção de danos

Abstract

This paper proposes a novel method for Structural Health Monitoring (SHM) utilizing unsupervised Quantum Machine Learning (QML). The suggested process entails taking raw acceleration data, extracting characteristics from them, and embedding them into quantum states such that a quantum classifier can analyze them. Potential structural abnormalities are detected by evaluating an anomaly score function, which is derived via training the model with known intact situations and identifying variations from typical behaviors. Experimental implementations on a laboratory two-story frame to confirm the proposed framework, showing promising results in anomaly identification and quantification. This work establishes the groundwork for future investigations at the nexus of quantum computing and civil engineering through relevant experiments, analyses, and discussions, expanding the boundaries of SHM research.

Downloads

References

ALVES, Victor; CURY, Alexandre. A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements. Structural Control and Health Monitoring, v. 28, n. 7, p. e2748, 2021.

BAKER, J. S.; HOROWITZ, H.; RADHA, S. K.; FERNANDES, S.; JONES, C.; NOORANI, N.; SKAVYSH, V.; LAMONTAGNE, P.; SANDERS, B. C. Quantum variational rewinding for time series anomaly detection. arXiv preprint arXiv:2210.16438, 2022.

CORREA-JULLIAN, C.; COFRE-MARTEL, S.; SAN MARTIN, G.; LOPEZ DROGUETT, E.; DE NOVAES PIRES LEITE, G. ; COSTA, A. Exploring Quantum Machine Learning and feature reduction techniques for wind turbine pitch fault detection. Energies, v. 15, n. 8, p. 2792, 2022.

FINOTTI, R.; SILVA, C; OLIVEIRA, P.; BARBOSA, F.; CURY, A.; SILVA, R. Novelty detection on a laboratory benchmark slender structure using an unsupervised deep learning algorithm. Latin American Journal of Solids and Structures, v. 20, p. e512, 2023.

KAYE, Phillip; LAFLAMME, Raymond; MOSCA, Michele. An introduction to quantum computing. OUP Oxford, 2006.

KHAN, Mansoor A.; AMAN, Muhammad N.; SIKDAR, Biplab. Beyond Bits: A Review of Quantum Embedding Techniques for Efficient Information Processing. IEEE Access, 2024.

RYTTER, A. Vibrational based inspection of civil engineering structures. 1993. Tese de doutorado – Denmark: Department of Building Technology and Structural, Aalborg University, Aalborg, 1993.

TROCHUN, Y.; WANG, Z.; ROKOVYI, O.; PENG, G.; ALIENIN, O.; LAI, G.; GORDIENKO, Y.; STIRENKO, S. Hurricane damage detection by classic and hybrid classic-quantum neural networks. In: 2021 International Conference on Space-Air-Ground Computing (SAGC). IEEE, 2021. p. 152-156.

Published

2025-04-09

How to Cite

Alves, V. H. M., Abrahão Cury, A., & Fortes Infante Gomes, R. (2025). Aprendizado de Máquina Quântica para Monitoramento Estrutural: Estudos pioneiros. Principia: Caminhos Da Iniciação Científica, 24. https://doi.org/10.34019/2179-3700.2024.v24.46058

Issue

Section

Artigos originais - Engenharias e Ciência da Computação