Potenciais aplicações medicinais de compostos 1,2,3-triazólicos: uma revisão

Autores

  • Roberta Cristina Novaes dos Reis Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais https://orcid.org/0000-0003-0208-6621
  • Gustavo Alves de Castro Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais
  • Gustavo Henrique Souza Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais
  • Lara Cristina Pereira Malaquias Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais
  • Alessandro Del’Duca Teixeira Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais https://orcid.org/0000-0002-6505-3897
  • Cassiano Fonseca Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais https://orcid.org/0000-0002-9230-3185
  • Adilson David da Silva Universidade Federal de Juiz de Fora, Departamento de Química, Juiz de Fora https://orcid.org/0000-0002-6415-1225

DOI:

https://doi.org/10.34019/1982-8047.2022.v48.36662

Palavras-chave:

Triazóis, Medicamentos Sintéticos, Tratamento Farmacológico

Resumo

Introdução: Os 1,2,3-triazóis são compostos de origem sintética e são relevantes para a química medicinal, além de poderem atuar como uma conexão entre duas ou mais substâncias de interesse, em uma estratégia de hibridação molecular. Objetivo: Abordar algumas aplicações farmacológicas dos derivados 1,2,3-triazólicos. Material e Métodos: Uma busca na base de dados Scopus utilizando o termo “1,2,3 triazole” (janeiro de 2021), foi realizada, além de uma pesquisa nos bancos de dados eletrônicos público. Resultados: Foram encontrados 5.760 resultados para os últimos dez anos sobre 1,2,3-triazóis, bem como várias publicações referentes a derivados 1,2,3-triazólicos de interesse farmacológico. Conclusão: Os compostos 1,2,3-triazólicos têm adquirido cada vez mais atenção e visibilidade no que se refere as suas potenciais atividades farmacológicas, tais como antiviral, antitumoral, antifúngica, antiparasitária e antimicrobiana.

Downloads

Não há dados estatísticos.

Referências

Forezi LSM, Cardoso MFC, Gonzaga DTG, Silva FC, Ferreira VF. alternative routes to the click method for the synthesis of 1,2,3-Triazoles: an important heterocycle in medicinal chemistry. Curr Top Med Chem. 2018; 18(17):1428-53.

Huisgen R, Gotthardt H, Bayer HO, Schaefer FCA. New type of mesoionic aromatic compound and its 1,3-DipoIar Cycloaddition reactions with acetylene derivatives. Angew Chem Int. Ed. 1964; 3(2):136-7.

Ayouchia HBE, Bahsis L, Anane H, Domingo LR, Stiriba S. Understanding the mechanism and regioselectivity of the copper(I) catalyzed [3+2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Advances. 2018; 8:7670-8.

Melo JOF, Donnici CL, Augusti R, Ferreira VF, Souza MCBV, Ferreira MLG, Cunha AC. Heterocíclos 1,2,3-triazólicos: histórico, métodos de preparação, aplicações e atividades farmacológicas. Quim Nova. 2006; 29(3):569-79.

Tornfe CW, Christensen C, Meldal M. Peptidotriazóis em fase sólida: [1,2,3] -triazóis por cicloadições 1,3-dipolares catalisadas por cobre regioespecífico (I) de alcinos terminais em azidas. J Org Chem. 2002, 67(9):3057-64.

Medal M, Tornoe CW. Cicloadição de azida-alcino catalisada por Cu. Chem Rev 2008; 108(8):2952-3015.

Breugst M, Reissig HU. A reação de Huisgen: marcos da cicloadição 1,3-dipolar. Angew Chem Int Ed. 2020; 59(30):12293-307.

Gonzaga DTG, Forezi, LSM, Lima, CGS, Ferreira PG, Silva FC, Ferreira VF. Huisgen and his adventures in a playground of mechanisms and novel reactions. Quim Nova. 2020. doi: 10.21577/0100-4042.20170656.

Rostovtsev VV, Green LG, Fokin VV, Sharpless KBA. Stepwise Huisgen Cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition. 2002; 41(14):2596-9.

Kolb HC, Finn M, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001; 40(11):2004-21.

Freitas LBO, Ruela FA, Ferreira GR, Alves RB, Freitas RP, Santos L. A reação "click" na síntese de 1,2,3-triazóis: aspectos químicos e aplicações. Quim Nova. 2011; 34(10):1791-804.

Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from some good reactions angew. Chem Int Ed. 2001; 40(11):2004-21.

Erythropel HC, Zimmerman JB, Winter TM, Petitjean L, Melnikov F, Lam CH et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018; 20: 1929-61.

Brik A, Muldoon J, Lin YC, Elder JH, Goodsell DS, Olson AJ, Fokin VV, Sharpless KB, Wong CH. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors. Chem. Bio. chem. 2003; 4(11): 1246-8.

Viegas-Junior C, Danuello A, Bolzani VS, Barreiro EJ, Fraga CAM. Molecular Hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007; 14(17):1829-52.

Antinarelli LMR, Carmo AML, Pavan FR, Leite CQF, Silva AD, Coimbra ES et al. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org Med Chem Lett. 2012; 2(16):1-8.

Khedar P, Pericherla K, Singh RP, Jha PN, Kumar A. Click chemistry inspired synthesis of piperazine-triazole derivatives and evaluation of their antimicrobial activities. Med Chem Res. 2015; 24:3117-26.

Forezi LSM, Lima CGS, Amaral AAP, Ferreira PG, De Souza MCBV, Cunha AC et al. Bioactive 1,2,3-Triazoles: an account on their synthesis, structural diversity and biological applications. The Chemical Record. 2021. doi: 10.1002/tcr.202000185.

Maddila S, Pagadala R, Jonnalagadda SB. 1,2,4-Triazoles: a review of synthetic approaches and the biological activity. Lett Org Chem. 2013; 10:693-714.

Kumar SS, Kavitha HP. Synthesis and biological applications of triazole derivatives: a review. Mini-Rev Org Chem. 2013; 10(1). doi.org/10.2174/1570193X11310010004.

Barbosa GG, Aguiar AP. Derivados 1,2,3-triazol: métodos de síntese e atividade antibacteriana. RMCT. 2020; 37(4).

Scopus Preview. Sources: [43,685 results]. [citada em jan. 2021]. Acesso em: https://www.scopus.com/sources?zone=TopNavBar&origin=NO%20ORIGIN%20DEFINED.

Del'Duca A, Cesar D, Diniz C, Abreu P. Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture. 2013; 388(391):115-21.

Del'Duca A, Cesar D, Freato T, Azevedo R, Rodrigues E, Abreu P. Variability of the nitrifying bacteria in the biofilm and water column of a recirculating aquaculture system for tilapia (Oreochromis niloticus) production. Aquaculture Reseach. 2019; 50(9):1-8.

Tortoga G, Funke B, Case C. Microbiologia. 12. ed. Porto Alegre: Artmed; 2017.

Walsh C. Antibiotics: actions, origins, resistance. Washington: ASM Press; 2003.

Salyers A, Whitt D. Bacterial pathogenesis: a molecular approach. Washington: ASM Press; 1994.

Baraka A, Traglia GM, Montaña S, Tolmasky ME, Ramirez MS. An Acinetobacter non-baumannii population study: antimicrobial resistance genes (ARGs). Antibiotics. 2021; 10(16):1-9.

Licata F, Quirino A, Pepe D, Matera G, Bianco A. Antimicrobial resistance in pathogens isolated from blood cultures: a two-year Multicenter Hospital Surveillance study in Italy antibiotics. 2021; 10(10):1-13.

Diniz C, Cara D, Nicoli J, Farias L, Carvalho M. Effect of metronidazole on the pathogenicity of resistant bacteroides strains in gnotobiotic mice. Antimicrob Agents Chemother. 2000; 44(9):2419-23.

Diniz C, Arantes R, Cara D, Lima F, Nicoli J, Carvalho M, Farias L. Enhanced

pathogenicity of susceptible strains of the Bacteroides fragilis group subjected to low doses of metronidazole. Microbes Infect. 2003; 5(1):19-26.

Fagundes H, Oliveira C. Infecções intramamárias causadas por Staphylococcus aureus e suas implicações em saúde pública. Ciência Rural. 2004; 34(4):1315-20.

Santos F, Mendonça L, Reis D, Guimarães A, Lange C et al. Presence of mecA-positive multidrug-resistant Staphylococcus epidermidis in bovine milk samples in Brazil. Journal of Dairy Science. 2016; 99(2):1374-82.

Griboff J, Carrizoa J, Bonanseab R, Valdesb M et al. Multiantibiotic residues in commercial fish from Argentina: the presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem. 2020; 332:127380.

Resende J A, Silva VL, Diniz CG. Aquatic environments in the One Health context: modulating the antimicrobial resistance phenomenon. Acta Limnol. Bras. 2020; 32(102):1-10.

Borger B, Burek M, Vilhena R, Fachi M, Junkert A et al. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. Hazard Mater. 2021; 402:123448.

Hill D, Morra M, Stalder T, Jechalke S, Top E et al. Dairy manure as a potential source of nutrients for crops and environmental contaminants. Environ Sci. 2021; 100:117-30.

Jang J, Kim M, Baek S, Shin J, Shin, S et al. hydrometeorological influence on antibiotic resistance genes (ARGs) and bacterial community at a recreational beach in Korea. Hazard Mater. 2021; 403:123599.

Rodrigues MB. Síntese e avaliação biológica de novos 1,2,3-triazóis-1,4-dissubstituidos derivados de benzocalcogenoanilinas e 2-aril-4-(azidometil)-1,3-calcogenazóis [Tese]. Santa Maria: Universidade Federal de Santa Maria; 2019.

Gill C, Jadhav G, Shaikh M, Kale R. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg Med Chem Lett. 2008; 18(23):6244-7.

Kharb R, Sharma PC, Shalar Yar M. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med Chem. 2011; 26(1):1-21.

Sumangala V, Chidananda N, Fernandes J, Kumari NS. Synthesis and antimicrobial activity of 1,2,3-triazoles containing the quinoline portion. Arch Pharm Res. 2010; 33(12):1911-18.

Al-Salahi RA, Al-Swaidan I, Al-Omer MA, Marzouk MS. Synthesis and antimicrobial activity of new 2-phenoxy-[1,2,4]triazolo[1,5-a]quinazoline derivatives. Life Sci J. 2013; 10(4).

Talekar RR, Wightman RH. Synthesis of some pyrrolo[2,3-d]pyrimidine and 1,2,3-triazole isonucleosides. Tetrahedron. 1997; 53:3831.

World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. [citado em ago 2020]. Acesso em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP et al. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020; 16(10):1686-97.

Stauffer SR, Turlington M, Chun A, Tomar S, Eggler A et al. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl)carboxamides as inhibitors of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro: identification of ML300 and non-covalent nanomolar inhibitors with a fit-induced binding. Bioorg Med Chem Lett. 2013; 23(22):6172-77.

Chatterjee S, Kumar N, Sehawat H, Yadav N, Mishra V. Click trazole as a linker for drug repurposing against SARs-CoV-2: a greener approach in race to find COVID-19 therapeutic. Current Research in Green and Sustainable Chemistry. 2021; 4:100064.

Silva LP. Síntese de novos derivados triazólicos e avaliação de suas atividades antifúngicas [Dissertação]. Belo Horizonte: Universidade Federal de Minas Gerais; 2019.

Silva ACN, Júnior AAV, Cunha FA, Cunha MCSO, Menezes EA. Susceptibility testing of Candida albicans by disk diffusion method: a comparison of culture media. Brazilian Journal of Clinical Analyses. 2016; 48(4):363-9.

Arnold TM, Dotson E, Sarosi GA, Hage CA. Traditional and emerging antifungal therapies. Proc Am Thorac Soc. 2010; 7(10):222-8.

Espírito Santo Filho AR. Síntese e atividade antifúngica de derivados ftalimídicos ligados a triazóis [Dissertação]. Recife: Universidade Federal de Pernambuco, Brasil; 2015.

World Health Organization. World Malaria Report 2020: 20 years of global progress and challenges. Geneva; 2020.

Conroy AL, Datta D, John CC. What causes severe malaria and its complications in children? Lessons learned over the past 15 years. BMC Med. 2019; 17(52):1-4.

Hogan AB, Jewell BL, Sherrard-Smith E, Vesga JF, Watson OJ, Whittaker C et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. 2020; 8:1132-41.

Gomes P, Araújo MJ, Rodrigues M, Vale N, Azevedo Z, Iley J et al. Synthesis of imidazolidin-4-one and 1H-imidazo[2,1-a]isoindole-2,5(3H,9bH)-dione derivatives of primaquine scope and limitations. Tetrahedron. 2004; 60(26):5551-62.

Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem. 2017; 125:1300-20.

Ebel ER, Reis F, Petrov DA, Beleza S. Historical trends and new surveillance of Plasmodium falciparum drug resistance markers in Angola. Malaria Journal. 2021; 20(175):1-9.

Musonda CC, Whitlock GA, Witty MJ, Brun R, Kaiser M. Chloroquine-astemizole hybrids with potent in vitro and in vivo antiplasmodial activity. Bioorg. Med Chem Lett. 2009; 19(2):481-4.

Chiyanzu I, Clarkson C, Smith PJ, Lehman J, Gut J, Rosenthal PJ, Chibale K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg Med Chem. 2005; 13(9):3249-61.

Teixeira RR, Gazolla PAR, Da Silva AM, Borsodi MPG, Bergmann BR et al. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities. Eur J Med Chem. 2018; 146:274-86.

Luco JL, Recio-Balsells AI, Ghiano DG, Bortolotti A, Belardinelli JM et al. Exploring the chemical space of 1,2,3-triazolyl triclosan analogs for discovery of new antileishmanial chemotherapeutic agentes. RSC Med Chem. 2021; 12:120-8.

Rodrigues MP, Tomaz DC, Souza LA, Onofre TS, Menezes WA et al. Synthesis of cinnamic acid derivatives and leishmanicidal activity against Leishmania braziliensis. Eur J Med Chem. 2019; 183:111688.

Guimarães TT, Pinto MC, Lanza JS, Melo MN, Monte-Neto RL et al. Potent naphthoquinones against antimony-sensitive and resistant Leishmania parasites: synthesis of novel a and nor-alapachonebased 1,2,3-triazoles by copper-catalyzed azideealkyne cycloaddition. Eur J Med Chem. 2013; 63:523-30.

Corrales RCNR, Souza NB, Pinheiro LS, Abramo C, Coimbra ES et al. Thiopurine derivatives containing triazole and steroid: synthesis, antimalarial and antileishmanial activities. Biomed Pharmacother. 2011; 65:198-203.

Burza S, Croft SL, Boelaert M. Leishmaniasis. The Lancet. 2018; 392(10151):951-70.

Frézard F, Schettini DA, Rocha OGF, Demicheli C. Lipossomas: propriedades físico-químicas e farmacológicas, aplicações na quimioterapia à base de antimônio. Quím Nova. 2005; 28(3):511-18.

Rath S, Trivelin LA, Imbrunito TR, Tomazela DM, Jesús MN et al. Antimoniais empregados no tratamento da leishmaniose: estado da arte. Quím Nova. 2003; 26(4):550-55.

United Nations. The 2030 Agenda and the sustainable Development goals: an opportunity for Latin America and the Caribbean. Santiago: United Nations Publication; 2018. [citado em jan. 2022]. Acesso em: https://www.cepal.org/sites/default/files/publication/files/40156/S1801140_en.pdf.

Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother. 2004; 10(6):307-15.

Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother. 2019; 20(10):1251-65.

Braga FG, Coimbra ES, Matos MO, Lino Carmo AM, Cancio MD, Silva AD. Synthesis and biological evaluation of some 6-substituted purines. Eur J Med Chem. 2007; 42(4):530-7.

Freitas CS, Lage DP, Silva JAO, Costa RR, Mendonça DVC et al. In vitro and in vivo antileishmanial activity of β-acetyl-digitoxin, a cardenolide of Digitalis lanata potentially useful to treat visceral leishmaniasis. Parasite. 2021; 28(38):1-14.

Meinel RS, Almeida ADC, Stroppa PHF, Glanzmann N, Coimbra ES, da Silva AD. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Chem Biol Interact. 2020; 315:108850.

Stroppa PHF, Antinarelli LMR, Carmo AML, Gameiro J, Coimbra ES, da Silva AD. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg Med Chem. 2017; 25(12):3034-45.

Zhou CH, Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr Med Chem. 2012; 19(2):239-80.

Zhang X, Luo J, Li Q, Xin Q, Ye L, Zhu Q. et al. Design, synthesis and antitumor evaluation of 1,2,4-triazol-3-one derivatives and pyridazinone derivatives as new CXCR2 antagonists. Eur J Med Chem. 2021; 226:113812.

Coulidiate TH. Avaliação dos efeitos anticancerígenos dos 1,2,3-triazóis derivados do núcleo 1,4-naftoquinona em linhagens leucêmicas humanas [Tese]. João Pessoa: Universidade Federal da Paraíba; 2014.

Kamal A, Shankaraiah N, Devaiah V, Laxma Reddy K, Juvekar A, Sen S. et al. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing 'click' chemistry: DNA-binding affinity and anticancer activity. Bioorg Med Chem Lett. 2008; 18(4):1468-73.

Zhai X, Zhao YF, Liu YJ, Zhang Y, Xun FQ et al. Synthesis and cytotoxicity studies of Novel [1,2,4]Triazolo[1,5-a]pyrimidine-7-amines. Chem Pharm Bull. 2008; 56(7):941-5.

Fagundes EMS, Delp J, Prazeres PDM, Marques LB, Carmo AML et al. Correlation of structural features of novel 1,2,3-triazoles with their neurotoxic and tumoricidal properties. Chem Biol Interact. 2018; 291: 253-263.

Empresa Brasileira de Serviços Hospitalares (BR). Depressão é uma das principais causas de suicídio, aponta entidade internacional. 2019. [citado em dez 2020]. Acesso em: https://www.gov.br/ebserh/pt-br/comunicacao/noticias/depressao-e-uma-das-principais-causas-de-suicidio-aponta-entidade-internacional.

Donato F. Envolvimento dos sistemas dopaminérgico no efeito tipo antidepressivo causado pelo fenilselenometil-1,2,3-triazol em camundongos [Dissertação]. Uruguaiana: Universidade Federal do Pampa; 2013.

Menegatti R, Cunha AC, Ferreira VF, Pereira EFR, El-Nabawi A et al. Design, synthesis and pharmacological profile of new dopamine D2 receptor ligands. J Bioorg Med Chem. 2003; 11(22):4807-13.

Fraga CAM, Menegatti R, Barreiro EJ, Neves G, Betti AH et al. Descoberta de novos protótipos N-fenilpiperazínicos heteroarilazólicos candidatos a fármacos antipsicóticos atípicos. Rev Virtual Quim. 2010; 2(1):28-37.

Downloads

Publicado

2022-08-11

Como Citar

1.
Cristina Novaes dos Reis R, Alves de Castro G, Henrique Souza Oliveira G, Cristina Pereira Malaquias L, Del’Duca Teixeira A, Fonseca C, David da Silva A. Potenciais aplicações medicinais de compostos 1,2,3-triazólicos: uma revisão . hu rev [Internet]. 11º de agosto de 2022 [citado 26º de setembro de 2022];48:1-15. Disponível em: https://periodicos.ufjf.br/index.php/hurevista/article/view/36662

Edição

Seção

Artigos de Revisão da Literatura