Obesidade e infecção por SARS-CoV-2: papel da metainflamação

Autores

DOI:

https://doi.org/10.34019/1982-8047.2020.v46.32241

Palavras-chave:

Obesidade, Pandemias, SARS-CoV-2, COVID-19

Resumo

Introdução: O SARS-CoV-2, agente patológico da COVID-19, tem sido descrito como um vírus altamente infeccioso, transmitido de humano para humano com taxas de infecção alarmantes em todo o mundo. O elevado número de mortes devido à COVID-19 está em sua maioria associado à idade avançada ou à comorbidades. Dentre elas, citamos obesidade, diabetes mellitus, doenças cardiovasculares, doenças respiratórias crônicas, hipertensão arterial, coagulopatias e câncer. Objetivo: Esta revisão visa contribuir com uma atualização concisa e desenvolvimento do conhecimento científico além de trazer discussão sobre pontos ainda não muito bem compreendidos do impacto das alterações metabólicas e da ativação do sistema imunológico no desenvolvimento da COVID-19. Material e Métodos: Revisão de literatura de artigos científicos publicados entre 2002 e 2020, indexados nas bases de dados PubMed (National Library of Medicine and The National Institute of Health), Scielo (Scientific Eletronic Library Online), NCBI (National Center for Biotechnology Information) e Periódicos CAPES. Resultados e Discussão:  A obesidade é caracterizada por um estado inflamatório de baixo grau, conhecido como inflamação metabólica ou metainflamação. Alterações decorrentes da inflamação metabólica, tornam o hospedeiro mais propenso a infecções e o sistema imunológico menos responsivo a vacinas, antivirais e antimicrobianos. Além disso, a obesidade e o SARS-CoV-2 compartilham elementos comuns da resposta imune e do processo inflamatório, como citocinas, quimiocinas e adipocinas secretados na metainflamação. Em adição, é possível que o vírus e a obesidade interajam em vias de sinalização comuns que amplificam distúrbios metabólicos, o que leva a exacerbação da infecção pelo SARS-CoV-2 em obesos. Conclusão: A resposta imunológica deficiente e comorbidades são importantes determinantes da gravidade da infecção viral por SARS-Cov-2 em pacientes obesos. Assim, sugere-se que a obesidade não apenas aumenta o risco de complicações da COVID-19 como também amplifica distúrbios imunometabólicos, o que pode levar à exacerbação da infecção pelo SARS-CoV-2 em indivíduos obesos.

Referências

Word Health Organization. Body Mass Index [Internet]. The global health observatory. 2020. [Citado em ano mês dia] Disponível em: https://www.who.int/data/gho/data/themes/theme-details/GHO/body-mass-index-(bmi)

NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016; 387(10026):1377-96.

Ministério da Saúde (BR). Vigitel Brasil 2020 [Internet]. 2020. [Citado em 10 de setembro de 2020] Disponível em: https://irp-cdn.multiscreensite.com/63a687e5/files/uploaded/vigitel-brasil-2019-vigilancia-fatores-risco.pdf

Word Health Organization. Obesity [Internet]. 2020. [Citado em 15 de dezembro de 2020] Disponível em: https://www.who.int/health-topics/obesity#tab=tab_1.

Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018; 61(2):142-50.

Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008; 454(7203):455-62.

Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011; 29:415-45.

Engin A. The pathogenesis of obesity-associated adipose tissue inflammation. Obes Lipotoxicity, Adv Exp Med Biol. 2017; 960.

Weisberg SP, Leibel RL, Anthony W, Jr F, Weisberg SP, Mccann D et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112(12):1796-808.

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444(7121):860-7.

Nieuwdorp M, Stroes ESG, Meijers JCM, Büller H. Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol. 2005; 5(2):155-9.

Jaganjac M, Almuraikhy S, Al-Khelaifi F, Al-Jaber M, Bashah M, Mazloum NA et al. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients. Redox Biol. 2017; 12:483-90.

Engin AB. Adipocyte-macrophage cross-talk in obesity. Obes Lipotoxicity, Adv Exp Med Biol. 2017; 960:327-43.

Teran-Cabanillas E, Montalvo-Corral M, Caire-Juvera G, Moya-Camarena SY, Hernández J. Decreased interferon-α and interferon-β production in obesity and expression of suppressor of cytokine signaling. Nutrition. 2013; 29(1):207-12.

Terán-Cabanillas E, Hernández J. Role of leptin and SOCS3 in inhibiting the type i interferon response during obesity. Inflammation. 2017; 40(1):58-67.

Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY et al. Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab J. 2018; 42(4):270-81.

Honce R, Karlsson EA, Wohlgemuth N, Estrada LD, Meliopoulos VA, Yao J. Obesity-related microenvironment promotes emergence of virulent influenza virus strains. Am Soc Microbiol. 2020; 11(2):1-16.

Honce R, Schultz-Cherry S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front Immunol. 2019; 10:1-15.

Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020; 57(6):759-64.

Karlsson EA, Hertz T, Johnson C, Mehle A, Krammer F, Schultz-Cherry S. Obesity outweighs protection conferred by adjuvanted influenza. MBio. 2016; 7(4):1144-16.

Ahn SY, Sohn SH, Lee SY, Park HL, Park YW, Kim H et al. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology. Environ Toxicol Pharmacol. 2015; 40(3):924-30.

Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M et al. Parallel evolution of influenza across multiple spatiotemporal scales. Elife. 2017; 6:1-16.

Dhurandhar NV, Bailey D, Thomas D. Interaction of obesity and infections. Obes Rev. 2015; 16(12):1017-29.

Pasquarelli do Nascimento G, Braz-de-Melo HA, Faria SS, Santos IO, Kobinger GP, Magalhães KG. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front Endocrinol. 2020; 11:1-16.

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020:1-17.

Neidich SD, Green WD, Jennifer R, Karlsson EA, Schultz-Cherry S, Noah TL et al. Increased risk of influenza among vaccinated adults who are obese. 2017; 41(9):1324-30.

Bandaru P, Hemalatha R, Nappanveettil G. The impact of obesity on immune response to infection and vaccine: an insight into plausible mechanisms. Endocrinol Metab Syndr. 2013; 02(02).

Valencak TG, Osterrieder A, Schulz TJ. Sex matters: the effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol. 2017; 12:806-13.

Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2):185-92.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054-62.

Zhou J, Tan J. Letter to the editor: diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism. 2020; 107:154216.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 2019(7):811-8.

Filardi T, Morano S. COVID-19: is there a link between the course of infection and pharmacological agents in diabetes? J Endocrinol Invest. 2020; 43(8):1053-60.

Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases: a statement from the European Society of Endocrinology. Endocrine. 2020; 68(1):2-5.

Deng G, Yin M, Chen X, Zeng F. Clinical determinants for fatality of 44.672 patients with COVID-19. Crit Care. 2020; 24(1):1-3.

Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020; 395(10236):1544-5.

Finucane FM, Davenport C. Coronavirus and obesity: could insulin resistance mediate the severity of Covid-19 infection? Front Public Heal. 2020; 8:1-5.

Xie J, Zu Y, Alkhatib A, Pham TT, Gill F, Jang A et al. Metabolic syndrome and COVID-19 mortality among adult black patients in New Orleans. 2020; 1-6.

Fung TS, Liu DX. The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology. 2019; 533:34-44.

Shi C-S, Qi H-Y, Boularan C, Huang N-N, Abu-Asab M, Shelhamer JH et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014; 193(6):3080-9.

Fung TS, Liu DX. Human coronavirus : host-pathogen interaction. 2019; 1-29.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):281-292.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271-280.

Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y et al. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathog. 2020; 16(3):1-19.

Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4):562-9.

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20(6):363-74.

Furuhashi M, Moniwa N, Takizawa H, Ura N, Shimamoto K. Potential differential effects of renin-angiotensin system inhibitors on SARS-CoV-2 infection and lung injury in COVID-19. Hypertens Res. 2020; 43(8):837-40.

Ministério da Saúde (BR). Guia de vigilância epidemiológica. Emergência saúde pública de importância nacional pela doença pelo coronavírus 2019 [Internet]. 2020. [Citado em 15 de dezembro de 2020] Disponível em: https://portalarquivos.saude.gov.br/images/af_gvs_coronavirus_6ago20_ajustes-finais-2.pdf

García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol. 2020; 11:4-8.

Busetto L, Bettini S, Fabris R, Serra R, Dal Pra C, Maffei P et al. Obesity and COVID-19: an Italian Snapshot. Obesity. 2020; 28(9):1600-5.

Dietz W, Santos-Burgoa C. Obesity and its Implications for COVID-19 Mortality. Obesity. 2020; 28(6):1005.

Ministério da Saúde (BR). Coronavírus Brasil [Intenet]. 2020. [citado em 21 de dezembro de 2020] Disponível em: https://covid.saude.gov.br/

Word Health Organization. WHO coronavirus disease (COVID-19) dashboard [Intenet]. [citado em 21 de dezembro de 2020] Disponível em: https://covid19.who.int/table

Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA J Am Med Assoc. 2020; 323(18):1775-6.

Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369:1-15.

Singh AK, Gupta R, Misra A. Comorbidities in COVID-19: outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr Clin Res Rev. 2020; 14(4):283-7.

Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr Clin Res Rev. 2020; 14(4):303-10.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):934-43.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5):475-81.

Ministério da Saúde (BR). Boletim epidemiológico especial 31 [Internet]. 2020. [citado em 18 de setembro de 2020] Disponível em: http://antigo.saude.gov.br/images/pdf/2020/September/17/Boletim_epidemiologico_COVID_31.pdf

Barrasa H, Rello J, Tejada S, Martín A, Balziskueta G, Vinuesa C et al. SARS-CoV-2 in Spanish intensive care units: early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med. 2020; 1-9.

Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. J Am Med Assoc. 2020; 323(16):1612-4.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA J Am Med Assoc. 2020; 323(11):1061-9.

Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X et al. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res Care. 2020; 8(1):1-9.

Bello-Chavolla O, Bahena-López J, Antonio-Villa N, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrinol Metab. 2020; 105(8):2752-61.

Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA J Am Med Assoc. 2020; 323(15):1488-94.

Palmieri L, Vanacore N, Donfrancesco C, Lo Noce C, Canevelli M, Punzo O et al. Clinical characteristics of hospitalized individuals dying with COVID-19 by age group in Italy. Journals Gerontol Ser A. 2020; 1-5.

Rezende LFM, Thome B, Schveitzer MC, de Souza-Júnior PRB, Szwarcwald

CL. Adults at high-risk of severe coronavirus disease-2019 (Covid-19) in Brazil. Rev Saúde Pública. 2020; 54:1-9.

Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020; 15(7).

Rizzo S, Chawla D, Zalocusky K, Keebler D, Chia J, Lindsay L et al. Descriptive epidemiology of 16.780 hospitalized COVID-19 patients in the United States. MedRxiv. 2020; 1-20.

Hamer M, Gale CR, Kivimäki M, Batty GD. Overweight, obesity, and risk of hospitalization for COVID-19: a community-based cohort study of adults in the United Kingdom. Proc Natl Acad Sci. 2020; 117(35):21011-3.

Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020; 28(7):1195-9.

Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP et al. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: a preliminary report of the first 28 patients from the korean cohort study on COVID-19. J Korean Med Sci. 2020; 35(13):1-12.

Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020; 18(1).

Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L et al. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain. PLoS One. 2017; 12(1):1-12.

Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R et al. Hospitalization rates and characteristics of patients hospitalized with laboratory confirmed coronavirus disease 2019 - Covid-NET, 14 states, March 1-30, 2020. Morb Mortal Wkly Report, US Dep Heal Hum Serv Dis Control Prev. 2020; 69(15):458-64.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18):1708-20.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506.

Vavougios GD. A data-driven hypothesis on the epigenetic dysregulation of host metabolism by SARS coronaviral infection: potential implications for the SARS-CoV-2 modus operandi. Med Hypotheses. 2020; 140:109759.

Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74.

Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci. 2020; 10(1):1-5.

Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - Key questions for impact assessment. N Engl J Med. 2020; 382(8):692-4.

De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8):523-34.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229):1033-4.

Ulhaq ZS, Soraya GV. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020; 50(4):382-3.

Mirsoian A, Bouchlaka MN, Sckisel GD, Chen M, Pai CCS, Maverakis E et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014; 211(12):2373-83.

Maier HE, Lopez R, Sanchez N, Ng S, Gresh L, Ojeda S et al. Obesity increases the duration of influenza A virus shedding in adults. J Infect Dis. 2018; 218(9):1378-82.

Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D et al. Specific biological features of adipose tissue, and their impact on HIV persistence. Front Microbiol. 2019; 10:1-25.

Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin North Am. 2018; 102(1):13-33.

Secretan BL, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer. N Engl J Med. 2016; 375(8).

Hernández HR, Hernández LES, Ramírez GR, Reyes RMA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol. 2013; 2013:11.

Emanuela F, Grazia M, Marco DR, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012; 2012:1-7.

Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017; 127(1):1-4.

Zhang Y, Chua S. Leptin function and regulation. Compr Physiol. 2018; 8(1):351-69.

Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018; 8(3):1031-63.

Kita S, Maeda N, Shimomura I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest. 2019; 129(10):4041-9.

Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res. 2019; 60(10):1648-97.

Engin AB, Engin A. Obesity and Lipotoxicity. The definition and prevalence

of obesity and metabolic syndrome. Adv Exp Med Biol. 2017; 960:1-17.

Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46(11):2347-55.

Haiyan Xu, Glenn T. Barnes, Qing Yang et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Screen. 2003; 112(12):1821-30.

Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017; 37:35-40.

Guilherme A, Virbasius J V., Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9(5):367-77.

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11(2):85-97.

Tsatsanis C, Margioris AN, Kontoyiannis DP. Association between H1N1 infection severity and obesity-adiponectin as a potential etiologic factor. J Infect Dis. 2010; 202(3):459-60.

Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav. 2017; 176:139-48.

Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes. 2012; 36(8):1072-7.

Klinkhammer J, Schnepf D, Ye L, Schwaderlapp M, Gad HH, Hartmann R et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife. 2018; 7:1-18.

O’Brien KB, Vogel P, Duan S, Govorkova EA, Webby RJ, McCullers JA et al. Impaired wound healing predisposes obese mice to severe influenza virus infection. J Infect Dis. 2012; 205(2):252-61.

Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020; 43(7):1399-407.

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11(8):875-9.

Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019; 4(20).

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5):2620-9.

Chen Q, Zheng Z, Zhang C, Zhang X, Wu H, Wang J et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection. 2020; 48(4):543-51.

Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020; 27(1):125-136.

Yang L, Chan KP, Lee RS yin, Chan WM, Lai HK, Thach TQ et al. Obesity and influenza associated mortality: evidence from an elderly cohort in Hong Kong. Prev Med (Baltim). 2013; 56(2):118-23.

Morgan OW, Bramley A, Fowlkes A, Freedman DS, Taylor TH, Gargiullo P et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A (H1N1) disease. PLoS One. 2010; 5(3):1-6.

Moser JAS, Galindo-Fraga A, Ortiz-Hernández AA, Gu W, Hunsberger S, Galán-Herrera JF et al. Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. Influenza Other Respi Viruses. 2019; 13(1):3-9.

Finer N, Garnett SP, Bruun JM. COVID‐19 and obesity. Clin Obes. 2020; 10(3):1-2.

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020; 41(19).

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4):844-7.

Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis. 2009; 19(6):440-9.

Vilahur G, Ben-aicha S, Badimon L. Cardiovascular research: spotlight issue: "dysfunctional adipocyte and cardiovascular disease". New insights into the role of adipose tissue in thrombosis. Eur Soc Cardiol. 2017.

Barale C, Russo I. Influence of cardiometabolic risk factors on platelet function. Int J Mol Sci. 2020; 21(2):1-27.

Movahed MR, Khoubyari R, Hashemzadeh M, Hashemzadeh M. Obesity is strongly and independently associated with a higher prevalence of pulmonary embolism. Respir Investig. 2019; 57(4):376-9.

Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020; 111.

Matacic C. Blood vessel injury may spur disease’s fatal second phase. Science (80-). 2020; 368(6495):1039-41.

Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020; 18(7):1738-42.

Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95(7):834-47.

Connors J, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Am Soc Hematol. 2021; 135(23):2033-40.

Campello E, Zabeo E, Radu CM, Spiezia L, Gavasso S, Fadin M et al. Hypercoagulability in overweight and obese subjects who are asymptomatic for thrombotic events. Thromb Haemost. 2015; 113(1):85-96.

Hottz ED, Bozza FA, Bozza PT. Platelets in immune response to virus and immunopathology of viral infections. Front Med. 2018; 5.

Rao S, Lau A, So HC. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care. 2020; 43(7):1416-26.

Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS et al. Obesity and malnutrition similarly alters the renin–angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017; 48:74-82.

Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020; 21(6):10-1.

Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis. 2020; 222(4):556-63.

Liu L, Fang Q, Deng F, Wang H, Yi CE, Ba L et al. Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. J Virol. 2007; 81(9):4694-700.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8(4).

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94(7).

Yan R, Zhang Y, Guo Y, Xia L, Zhou Q. Structural basis for the recognition of the 2019-nCoV by human ACE2. 2020; 2762:1-10.

Marietta M, Coluccio V, Luppi M. COVID-19, coagulopathy and venous thromboembolism: more questions than answers. Intern Emerg Med. 2020; 1-13.

Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020; 120(6):998-1000.

Hui DS. Systemic corticosteroid therapy may delay viral clearance in patients with Middle East respiratory syndrome coronavirus infection. Am J Respir Crit Care Med. 2018; 197(6):700-1.

Matsuyama S, Kawase M, Nao N, Shirato K, Ujike M, Kamitani W et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. 2020.

Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT, et al. COVID-19-related genes in sputum cells in asthma: relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020; 202(1):83-90.

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA J Am Med Assoc. 2020; 323(18):1824-36.

Baigent C, Bhala N, Emberson J, Merhi A, Abramson S, Arber N et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013; 382(9894):769-79.

Little P, Moore M, Kelly J, Williamson I, Leydon G, McDermott L et al. Ibuprofen, paracetamol, and steam for patients with respiratory tract infections in primary care: pragmatic randomised factorial trial. BMJ. 2013; 348:12-14.

Roumier M, Paule R, Groh M, Vallee A, Ackermann F. Interleukin-6 blockade for severe COVID-19. 2020; 4-10.

Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020; 178:1-4.

Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020; 395(10234):1407-9.

Gracia-Ramos AE. Is the ACE2 overexpression a risk factor for COVID-19 Infection? Arch Med Res. 2020; 51(4):345-6.

Zhang X, Yu J, Pan L ya, Jiang H yin. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: a systematic review and meta-analysis. Pharmacol Res. 2020; 158:1-22.

Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med. 2020; 382(25):1-8.

Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 2015; 156(10):3559-69.

Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol. 2015; 93(3):343-51.

Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D et al. Obesity: a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep. 2020; 22(1):9-19.

Sánchez-Aguilar M, Ibarra-Lara L, Del Valle-Mondragón L, Rubio-Ruiz ME, Aguilar-Navarro AG, Zamorano-Carrillo A et al. Rosiglitazone, a ligand to PPAR γ, improves blood pressure and vascular function through renin-angiotensin system regulation. PPAR Res. 2019; 2019:1-13.

Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao XQ et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Sci World J. 2014; 2014:1-8.

Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020; 1671-81.

Prestes RT, Rocha N, Miranda A, Teixeira A, Simoes E Silva A. The anti-inflammatory potential of receptor axis: evidence from basic and clinical research. Curr Drug Targets. Curr Drug Targets. 2017; 18:1301-13.

Cunard R, Ricote M, DiCampli D, Archer DC, Kahn DA, Glass CK et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol. 2002; 168(6):2795-802.

Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008; 454(7203):470-7.

Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-γ activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol. 2010; 23(4):343-52.

Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther. 2011; 9(7):807-22.

Almeida PE, Carneiro AB, Silva AR, Bozza PT. PPARγ expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing. PPAR Res. 2012; 2012:1-7.

Almeida PE, Roque NR, Magalhães KG, Mattos KA, Teixeira L, Maya-Monteiro C et al. Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014; 1841(1):97-107.

Senesi P, Montesano A, Luzi L, Codella R, Benedini S, Terruzzi I. Metformin Treatment Prevents Sedentariness Related Damages in Mice. 2016; 2016(5):1-11.

Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine. 2017; 35(20):2694-700.

Moseley CE, Webster RG, Aldridge JR. Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respi Viruses. 2010; 4(5):307-11.

Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol - Lung Cell Mol Physiol. 2008; 295(3):497-504.

Mycroft-West, Su D, Pagani I, Rudd T, Elli S, Guimond S et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. bioRxiv. 2020; 1-22.

Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015; 2015:1-15.

Savioli F. Is there a rationale for heparin use among severe COVID-19 patients? Einstein. 2020; 18:1-6.

Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6):46-7.

Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020; 91(1):161-4.

Bukrinsky M, Mukhamedova N, Sviridov D. Lipid rafts and pathogens: the art of deception and exploitation. J Lipid Res. 2020; 61(5):601-10.

Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol. 2011; 19(7):368-75.

Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H et al. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008; 381(2):215-21.

Li GM, Li YG, Yamate M, Li SM, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007; 9(1):96-102.

Cagno V, Tintori C, Civra A, Cavalli R, Tiberi M, Botta L et al. Novel broad spectrum virucidal molecules against enveloped viruses. PLoS One. 2018; 13(12):1-18.

Verma S. HIV: a raft-targeting approach for prevention and therapy using plant-derived compounds (review). Curr Drug Targets. 2009; 10(1):51-9.

AbuMweis SS, Barake R, Jones PJH. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res. 2008; 52:1-18.

Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc. 2003; 78(8):965-78.

Downloads

Publicado

2021-02-18

Como Citar

1.
Albertoni ALS, Albertoni LGS, Almeida PE de. Obesidade e infecção por SARS-CoV-2: papel da metainflamação. hu rev [Internet]. 18º de fevereiro de 2021 [citado 7º de março de 2021];46:1-16. Disponível em: https://periodicos.ufjf.br/index.php/hurevista/article/view/32241

Edição

Seção

Artigos de Revisão da Literatura