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Resumo: Entre os sistemas de controle passivo para atenuação de vibrações em estruturas, 
aqueles que usam materiais visco-elásticos como núcleo dissipador de energia de vibração em 
vigas sanduíche são abordados neste trabalho.  Apresenta-se um modelo numérico baseado 
numa formulação denominada GHM (Golla-Hughes Method) que simula o comportamento 
dinâmico de materiais visco-elásticos. Os parâmetros do GHM usados na caracterização do 
material  visco-elástico  foram determinados  experimentalmente  e  um modelo  de  elemento 
finito sanduíche foi obtido e validado através de comparações entre resultados numéricos e 
experimentais, demonstrando um desempenho favorável do modelo proposto.

Palavras-chave: Materiais visco-elásticos; vigas sanduíche; atenuadores de vibração

Abstract: Among the passive control systems for attenuation of vibrations in structures, those 
that  use  viscoelastic  materials  as  a  damping  core  in  laminated-plate-like  components  are 
focused herein. In the present work an assessment of a time domain formulation for numerical 
modeling of viscoelastic materials is made. This formulation, known as GHM (Golla-Hughes 
Method), is based on the viscoelastic Young's modulus representation in Laplace's domain. 
The  GHM  parameters  used  in  the  characterization  of  a  viscoelastic  material  are 
experimentally determined. Finally, a sandwich finite element model obtained through GHM 
was validated by means of comparisons between numerical  results and their  experimental 
counterpart, demonstrating a favorable performance of this mathematical-numerical model.
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Introduction
The  modeling  of  viscoelastic 

materials  has  two  main  applications: 
Firstly,  the  simulation  of  rheological 
problems.  Normally,  in  this  case,  the 
inertial forces involved in the problem are 
not  taken  into  account  and  this  kind  of 
analysis  is  known  as  quasi-static.  The 
classic  models  of  Maxwell,  Voigt  and 
Kelvin  and  references  Beijer  (2002)  and 
Mesquita  (2003)  are  typical  examples  of 

such  models.  Secondly,  real  dynamic 
problems  involving  viscoelastic  materials 
have also been studied since the 50's in the 
works of Orbest (1952), Kelvin (1959) and 
Ross  (1959).  In  general,  these  kind  of 
models  simulate  the  dynamic  structural 
behavior  of  the  viscoelastic  material 
working  as  passive  vibration  control 
systems.

Vibration control systems assembled 
to structures, like the sandwich viscoelastic 
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systems,  have  experienced  a  growth  in 
practical applications due to some benefits 
related  to  cost-effectiveness  and  a  high 
level of dynamic damping (Barbosa, 2000; 
Barbosa  &  Battista,  2000;  Battista  et  al, 
1998;  Battista  & Pfeil,  1999).  One of  the 
first  large  scale  practical  applications  of 
sandwich viscoelastic elements in order to 
reduce  vibrations  was  the  World  Trade 
Center, New York, USA. Some features of 
this  kind  of  project  were  studied  by 
Mahmoodi (1969) and Samali et al (1995). 
In  Brazil,  Battista  et  al  (1998)  developed 
dynamic tests in a prototype of Rio-Niterói 
bridge  (Rio  de  Janeiro,  Brazil)  central 
spam, in 1:1 scale. This work consisted of a 
very comprehensive experimental program, 
including  comparisons  between  the 
dynamic behavior of a concrete/steel  deck 
and  a  sandwich  (concrete/viscoelastic 
material/steel)  deck,  concluding  that  the 
sandwich  deck  has  damping  ratio 
considerable  superior  for  high frequencies 
in this kind of application.

In order to model those systems, it is 
needed  a  formulation  which  takes  into 
account  the  temperature  and  frequency 
dependence of the Young's modulus and the 
damping  properties  of  the  viscoelastic 
material.

When  the  relevant  response  of  a 
sandwich viscoelastic system is framed in a 
short time interval, or in piecewise analysis, 
the temperature dependence may be ignored 
(Battista et al., 1998; Mahmoodi, 1969).

The  consideration  of  frequency-
dependent  viscoelastic  properties  in  time 
domain modelling is  rather  harder  than in 
the  frequency  domain  due  to  obvious 

reasons.  References  Kaliske  &  Rothert 
(1997),  Qian  &  Demao  (1990), 
Vasconcelos  (2003a and 2003b),  Yi et  al. 
(1998) and Golla & Hughes (1985) present 
some alternatives to solve this problem.

The  present  work  makes  an 
assessment  of  a  time  domain  formulation 
which adopts the frequency dependence of 
the  viscoelastic  properties  in  dynamic 
problems,  having  a  short  time  interval  of 
analysis.  The  employed  formulation  was 
implemented  in  a  computational  model 
within  the  framework  of  Finite  Element 
(FE)  method  based  on  the  Golla-Hughes 
Method (GHM) (Golla & Hughes, 1985).

The  application  of  GHM relies  on 
some  parameters  which  characterizes  the 
viscoelastic  material.  Such  parameters  are 
obtained herein, as described in section 3, 
via experimental tests.

As  a  numerical  example,  it  is 
presented a  sandwich FE model  based  on 
this  formulation,  which  is  capable  to 
simulate  the  dynamic  behavior  of  a 
experimentally tested sandwich beam. The 
theoretical  formulation  and  the 
implemented  solution  method  are 
thoroughly  assessed  by  means  of 
comparisons between numerical results and 
their  experimental  counterpart, 
demonstrating the favorable performance of 
this mathematical-numerical model.

1. The formulation of GHM
This section summarizes the GHM. 

Further  details  may be found in reference 
Golla  &  Hughes  (1985).The  complex 
Young's  modulus  may  be  expressed  in 
Laplace domain as:

( ) ( )s h sε ε= + (1)

where:   is the elastic part of the complex 
modulus,   ( )sh  is  the dissipation function 

associated  to  the  damping  and  s is  the 
Laplace variable. M. A. Biot (1955) (cited 
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in  Golla  &  Hughes,  1985)  proposed  a 
dissipation function as shown in Eq. (2).

( )
( )2

2

s s
h s

s s

α β

β δ

+
=

+ +
(2)

where:  α ,  β  and  δ  are  obtained by curve 
fitting experimental curves.

The dynamic equilibrium equation for 
a single degree of freedom - dof - system in 
Laplace  domain,  considering  null  initial 
conditions and Eq. (1), is presented in Eq. (3).

( ) ( ) ( ) ( ) ( )2 2M K M K Ks s q s s h s q s f sε ε   + = + + =    (3)

where:  M is the mass of the system;  K  is part of the system stiffness which excludes the 
complex modulus expressed in Laplace domain; ( )sq  is the dof and ( )sf  is the excitation.

The aim of GHM is to express Eq. (3) in the time domain using a particular inverse 
Laplace  transformation1.  It  may  be  proved  that  this  particular  transformation  may  be 
expressed in the form of Eq. (4).
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where:  t  is the time variable,  ( )tz  is an additional dof called dissipation variable, with no 
physical meaning.

By using an analog process and some additional considerations described in Golla & 
Hughes (1985), it is possible to achieve the system of differential equations for a multi-dof 
finite element as shown in Eq. (5).
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are, respectively, the mass, damping and stiffness matrices of the viscoelastic finite element, 
eM  is the finite element mass matrix considering an elastic system; eK  is the finite element 

1 Reference Barrett & Gotts, 2002, also deals with Laplace domain in order to simulate the dynamic behavior 
of viscoelastic systems.
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stiffness matrix considering an elastic system and excluding the Young's modulus; ( )tq  and 
( )tz  are, respectively,  the displacement vectors of the real and dissipation dofs;  0  and  I  

represents, respectively, the null and the identity matrix or vector;  ( )tf  is the force vector; 
21

dd ΛRR = ;  dR  is the matrix whose columns are the eigenvectors of eK  associated to the 
non-rigid body modes; and Λd is the diagonal matrix with the corresponding eigenvalues of 

dR .
The  dimension  of  the  viscoelastic 

matrices  depends  on  the  dimension  of  the 
corresponding  elastic  finite  element  and  the 
number of dissipation variables. Each physical 
dof  implies  into  one  dissipation  variable, 
although it is necessary to exclude those ones 
associated to rigid modes of eK . For example, 
for a plane quadrilateral  linear finite element 
with 2 dof per node:

• Elastic dof: 4 nodes × 2 dof per node = 
8 dof

• Dissipation  variables:  8  -  3  (rigid 
modes:  two  translations  and  one 
rotation) = 5

• Dimension of the viscoelastic matrices: 
8 + 5 = 13
Finally,  GHM parameters  ( ε ,  α ,  β  

and  δ ) obtained from experimental data and 
Eqs. (6), (7) and (8) allow the determination of 
the viscoelastic finite element matrices for any 
kind of finite element model.

2. Determination  of  GHM  parameters 
from experimental data

Equation  1  may also  be  expressed  in 
the  frequency  domain,  considering  the 
dissipation function of Eq. (2), as shown in Eq. 
(9).

( )
δι β ωω
ωι βωαε

++
+−+= 2

22
*E (9)

where:  *E  is the complex modulus expressed 
in the frequency domain;  1−=ι ; and  ω  is 
the frequency variable.

Commonly  this  complex 
modulus is divided into two parts:

• 'E :  the real part, known as storage 
modulus

• η :  the ratio between the imaginary 
and real parts, known as loss factor. 
Eqs  (10)  and  (11)  express, 
respectively, 'E  and η :

•

( )
( ) 2222

222
'

ωβωδ
βδωα ωε

+−
+−+=E     (10),          ( ) '2222

1
Eωβωδ

α β ω δη
+−

=     (11)

The parameters  ε ,  α ,  β  and  δ  in  Eqs. 
(10) and (11) are,  in general,  obtained by 
curve fitting of experimental  results  given 
in  terms  of  'E  and  η .  In  this  work 
experimental tests were developed in order 

to determine these parameters, by means of 
the sandwich beam technique (Nashif et al., 
1985).

The  experimental  program 
concerned  6  beams  of  different  lengths 
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divided  in  2  groups:  a  set  of  3  simple 
beams, presented in Figure 1; and a set of 3 
sandwich beams, presented in Figure 2. The 
simple  set  is  composed  by  3  elastic 
clumped-free aluminum beams having one 
single layer, and the sandwich set has tree 

viscoelastic sandwich clumped-free beams, 
with  two  layers  of  aluminum  and  the 
viscoelastic material  in the core.  For each 
set,  the  specimens  lengths  L  were  50,  80 
and 100 cm.

Figure 1: The Simple set. Figure 2: The Sandwich set.

Typical  tests  of  a  simple  sample  and  a 
sandwich  beam  scheme  are  presented  in 
Figures 3 and 4, respectively,  showing the 

excited  and  the  observed  points  valid  for 
both sets.

Figure 3: Photo of a typical simple specimen.
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Figure 4: Typical schema of the tests.

The instrumentation consists of one 
accelerometer  placed in the bottom of the 
samples, as indicated in Figure 3 and Figure 
4. The main features of the used equipment 
and the data acquisition are: accelerometer 
model AS-GA Kyowa,  rated capacity ±2g 
(safe  over-loading  300%);  acquisition 
system:  Lynx  ADS2000;  frequency  of 

acquisition 1000 Hz; low-pass filtering via 
hardware in 200 Hz; time of acquisition: 1 
s.

Free vibration tests were performed, 
employing instantaneous hammer impact as 
excitation and figure 5 presents typical time 
responses  for  a  simple  sample  and  for  a 
sandwich sample, both 100 cm long.

Figure 5: Typical time series for a simple and a sandwich specimen of 100 cm of length.
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The experimental results in terms of the tree 
first  natural  frequencies,  loss  factor  and 
standard deviations for the simple and the 
sandwich sets are presented in Tables 1 and 
2,  respectively.  The  modal  identification 
was carried out  using Random Decrement 

Method  (Asmussen,  1998)  and  Ibrahim 
Time Domain Method (Ewins, 2000). Each 
sample was subjected to 4 tests, and modal 
identifications  were carried out  about  200 
times,  taking  different  parts  of  the 
responses.

Length (cm) 100 cm 80 cm 50 cm
1f  (Hz)
1η

2.67 ± 0.10
0.0960 ± 0.0512

3.99 ± 0.05
0.0244 ± 0.0298

9.98 ± 0.01
0.0104 ± 0.002

2f  (Hz)
2η

15.44 ± 0.03
0.0256 ± 0.0028

22.77 ± 0.04
0.0250 ± 0.0180

54.28 ± 0.09
0.0380 ± 0.0066

3f  (Hz)

3η
42.93 ± 0.08
0.0210 ± 0.0206

63.62 ± 0.09
0.0258 ± 0.0180

157.72 ± 11.85
0.0730 ± 0.0356

Table 1: Summary of experimental results for the simple set.

Length (cm) 100 cm 80 cm 50 cm
1f  (Hz)
1η

5.05 ± 0.02
0.1434 ± 0.0084

7.55 ± 0.03
0.1770 ± 0.0062

16.95 ± 0.04
0.1748 ± 0.0060

2f  (Hz)
2η

24.54 ± 0.69
0.1508 ± 0.0374

37.13 ± 0.04
0.1768 ± 0.0058

79.33 ± 0.16
0.0765 ± 0.0102

3f  (Hz)

3η
60.13 ± 0.31
0.1754 ± 0.0098

93.18 ± 2.41
0.078 ± 0.0668

184.44 ± 3.00
0.1350 ± 0.0142

Table 2: Summary of experimental results for the sandwich set.

Except  for  the  third  natural 
frequency of the 50 cm long simple sample, 
all  the  identified  natural  frequencies  have 
standard  deviation  lower  than  4%.  The 
major  part  of  natural  frequencies  had 
standard deviation inferior to 1%. In terms 
of  damping  modal  identification,  the 
standard deviations were more important, in 
accordance  with  the  results  presented  in 
reference Cremona et  al.  (2003),  although 
the mean values are not very different from 
those obtained by Faisca (1998).

By applying the equations presented 
in reference Nashif (1985), with the results 
of mean natural frequencies and mean loss 
factor  obtained  from  the  two  tested  sets, 

presented in Tables 1 and 2, it is possible to 
calculate  'E  and η  for  the  viscoelastic 
material  in  the  discrete  values  of  natural 
frequencies of the sandwich set.

Figures  6  and  7  present, 
respectively,  the  storage  modulus  and  the 
loss  factor  of  the  tested  viscoelastic 
material.  The  solid  lines  in  these  figures 
indicate,  respectively,  'E  (Pascal)  and  η  
obtained  by  curve  fitting  viscoelastic 
parameters  ε ,  α ,  β  and  δ  in Eqs. (10) 
and  (11)  via  least  square  method  to  the 
discrete experimental points of  'E . In this 
case,  the curve fitted parameters  of GHM 
where  MPa58.0=ε ,  MPa26.5=α , 

161059.55 −⋅= sβ  and 291098.6 −⋅= sδ .
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Figure 6: Fitted curve for storage modulus. Figure 7: Fitted curve for the loss factor.

The  adopted  GHM  parameters  produce  a 
good adjustment for 'E , over-estimating η  
for low frequencies and underestimating η  
for  high  frequencies.  Obviously,  it  is 
possible  to  optimize  the  solution  for  both 
dynamic  characteristics,  but  it  is  not  the 
focus of this work (Barbosa et al., 2000).

3. The sandwich viscoelastic model

The proposed sandwich viscoelastic 
model  is  presented  in  Figure  8.  It  is 

composed by a combination of seven finite 
elements:  two  elastic  beam elements;  one 
quadrilateral linear viscoelastic plane stress 
element; and four connection elements. The 
model  has  24  physical  dofs  ( 1q  to  24q , 
numbered from 1 to 24), and 5 dissipation 
variables  ( 1z  to  5z  numbered from 25 to 
29).  The  dissipation  variable  directions 
plotted  in  Figure  8  have  no  physical 
interpretation.  The  dimension  of  the 
viscoelastic super element matrices is 24 + 
5 = 29.

Figure 8: The sandwich finite element.

In order to compute the contribution 
of  each  kind  of  finite  element  in  the 
composition of the sandwich super element 
matrices,  the  problem is  decomposed into 
three parts: a) contribution of the 2 elastic 

beam  elements;  b)  contribution  of  the  4 
connection elements; c) contribution of the 
rectangular viscoelastic element;

Principia



A viscoelastic sandwich beam finite element model                   9

4.1. Contribution  of  beam  and 
connection elements

The contribution  of  these  elements 
for  the  super  element  matrices  is  well 
known in the literature.  It  is  necessary to 
observe  the  connectivity  in  order  to 
correctly  assemble  its  contributions. 
Furthermore,  concerning  connection 
elements, they only contribute for the super 
element stiffness matrix.

4.2. Contribution  of  the  quadrilateral 
viscoelastic element

For  the  sake  of  simplicity,  the 
following  definition  is  adopted:  for  a  n-
dimensional square matrix H ; a k and a p-
dimensional vectors  l  and  c , respectively, 
where 1 ≤ k; p ≤ n, clH ,  is defined as a sub-
matrix of H  with lines l  and columns c .

The quadrilateral linear viscoelastic 
plane-stress part of the sandwich element is 
obtained  from a  linear  plane-stress  elastic 
element  presented  in  Figure  9,  whose 
displacement  field  is  defined  as  linear 
contributions for the super element matrix 
K  as shown in Eqs. (12), (13) and (14).

Figure 9: The quadrilateral linear plane stress viscoelastic element.
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=d ;  ν  is  the  Poisson  ration  of  the 

viscoelastic material; a
br = , a2 , b2  and t  are, respectively, the length, height and thickness 

of the quadrilateral element.
{ }ααααα ,,,,

22 , diag=clK (13)
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where: [ ]292827262522 == cl , and
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clK (14)

where:  [ ]171614138711103 =l  and  [ ]29282726253 =c .  Due  to  the 
eigenvalue problem involved in the solution of the viscoelastic stiffness matrix,  numerical 
values where presented in Eq. (14), obtained for  028000.4 −= er , thickness = 24 mm and 
Poisson’s ratio = 0.25.

The quadrilateral linear plane-stress viscoelastic element contribution for the 
super element matrices M  and C  is presented in Eqs. (15) and (16), respectively.


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δ
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δ
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δ
α

δ
αµµµµµµµµdiagclM (15)
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α β
δ

α β
δ

α β
δ

α β
δ

α βdiagclC (16)

where:  [ ]292827262517161413871110== cl ,  abtvρµ =  where 

vρ  is the viscoelastic material density.
It  is  important  to  observe  that  the 

proposed sandwich FE allows discontinuity 
in the displacement field between the beams 
and  the  quadrilateral  viscoelastic  element. 
In  this  case,  the  errors  inherent  to  the 
proposed FE must be investigated through 
the mesh convergence analysis.

5. Example of numerical application

In  this  section,  a  sandwich  finite 
element  model  of  a  clumped-free  beam 
obtained with the proposed methodology is 
analyzed. Free vibration tests are performed 
and the numerical results  are compared to 
the experimental counterpart.

5.1. The sandwich beam FE model

The  dynamic  behavior  of  the  100 
cm  long  sandwich  beam  (experimentally 
tested  in  section  3)  was  computationally 
modeled  with  the  sandwich  element 
proposed in this work.

The FE model was adopted after the 
convergence  analysis.  Results  for  a  free 
vibration  test  with impact  load  applied in 
models  with  6,  12,  24  and  48  sandwich 
super  elements  were  analyzed  and  it  was 
verified, by regarding Figure 10, that results 
for  24  and  48  are  practically  coincident. 
Due to this fact, the adopted model has 24 
super elements it is presented in Figure 11.
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Figure 10: Convergence analysis of the FE model.

Figure 11: The adopted FE model.

Physical  and  geometric 
characteristics of the model are presented in 
Tables  3  and  4,  respectively.  The 

viscoelastic  GHM  parameters  used  in  the 
computational  model  were  determined  as 
described in section 3.

Aluminum Viscoelastic 
material

Material  of  the 
connection elements

Young’s modulus (GPa) 68.70 Variable 6870.00
Density (kg/m³) 2690 795 0
Poisson’s ratio Not used 0.25 Not used
Table 3: Summary of material properties.

Superior  and  inferior 
beam elements

Quadrilateral 
viscoelastic 
elements

connection 
elements

Cross section width (mm) 24 24 24
Cross section height (mm) 3 2 3
Table 4: Summary of geometrical properties.
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The super element  finite element  matrices 
may  be  calculated  using  equations  of 
section 4. For the 24 super elements used in 
the  discretization,  it  implies  332  physical 
dof and 120 dissipation variables.

The adopted sandwich beam model 
was  submitted  to  an  excitation  function 
presented in Figure 12 which simulates the 
hammer impact of the experimental test.

Figure 12: The excitation function.

The set of 452 differential equations 
was integrated using Newmark method with 
8333 time  steps  of  0.00012 s,  consuming 
95%  of  the  total  CPU  processing  time 
which  reached  12,35  s  in  a  Matlab 
implementation  on  a  Pentium IV  2.8 
GHz.

The  time  domain  responses  were 
filtered with a low-pass filter in 200 Hz, as 
it was made in the experimental tests.

5.2. Comparison between numerical and 
experimental results

Figure  13  shows  a  comparison 
between the experimental and the numerical 
time  responses,  indicating  an  adequate 
correlation.

Figure 13: Comparisons between numerical and experimental results.

The  differences  between  numerical 
and experimental  results  are  in  agreement 
with  the  adopted  viscoelastic  model.  It  is 
possible to visually verify in Figure 13 that 

low frequency oscillations of the numerical 
model  tends  to  zero  faster  than  the 
experimental  results.  Whilst,  high 
frequency  oscillations  of  the  numerical 
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model  tends  to  zero  slower  than  the 
experimental results. It  is due to the over-
estimation and underestimation of the loss 
factor  in  low  and  high  frequencies, 
respectively.  On  the  other  hand,  the 
acceleration level of the model is very close 
to  the  experimental  counterpart,  probably 
due  to  the  good  agreement  between 
experimental  data and the fitted curve for 
the storage modulus.

In a qualitative point of view, these 
results  are  almost  equivalent,  considering 
that  the  acceleration  level  in  the  time 
interval  0  to  0.1  second is  practically  the 
same  and  also  that  the  acceleration  level 
past 0.3 second is practically negligible for 
both analysis.

These  results  indicate  the  good 
performance of the proposed FE model.

6. Conclusions

A GHM based sandwich FE model 
was presented in this work. All the element 
matrices  were developed and presented as 
well  as  the  experimental  procedures 
necessary to evaluate GHM parameters. A 
numerical  model  using  the  proposed  FE 
was  dynamically  tested  and  the  obtained 
results  were  compared  with  experimental 
results  counterpart,  showing  good 
agreement.
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