

Equilíbrio postural de pacientes em hemodiálise comparados a indivíduos sem doença renal crônica: estudo transversal

Postural balance in hemodialysis patients compared to individuals without chronic kidney disease: a cross-sectional study

Luciana Angélica da Silva de Jesus¹
Leda Marília Fonseca Lucinda^{1,2,3}
Luísa Gobbi Colares³
Clara Suppes Faria Freire³
Ana Flávia Moreira Campos³
Carolina Tristão Borém³
Luísa Oliveira Coelho³
Maycon Moura Reboredo^{1,4}

¹Núcleo de Pesquisa em Pneumologia e Terapia Intensiva, Universidade Federal de Fora, Brasil.

²Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Brasil.

³Faculdade de Medicina de Barbacena, Brasil.

⁴Faculdade de Medicina, Universidade Federal de Juiz de Fora, Brasil.

Faculdade de Medicina - UFJF, Av. Eugênio do Nascimento s/n°, Dom Bosco, Juiz de Fora, Minas Gerais CEP: 36038-330

♠ mayconreboredo@yahoo.com

RESUMO

Introdução: Pacientes com doença renal crônica (DRC) em hemodiálise (HD) apresentam fatores que contribuem para alterações no equilíbrio postural, aumentando o risco de quedas. Objetivo: Comparar o equilíbrio postural de pacientes em HD com indivíduos sem DRC, bem como verificar os fatores associados a alterações do equilíbrio postural nesses pacientes. Material e métodos: Foi realizado estudo transversal que incluiu um grupo de pacientes com DRC em Hemodiálise (GH) (n= 39, 55,1 ± 7,7 anos, 53,8% do gênero masculino) e um grupo controle (GC) com indivíduos sem DRC (n= 39, 55,3 ± 7,5 anos, 53,8% do gênero masculino). Os participantes foram submetidos a avaliações de equilibrio postural (Mini Balance Evaluation Systems Test - Mini-BESTest), mobilidade funcional (Time Up and Go), velocidade de marcha (Gait Speed Measured over 4m), força muscular (preensão palmar e teste de sentar e levantar de 10 repetições) e qualidade de vida (36-Item Short Form Survey). Resultados: O GH apresentou pior equilíbrio postural avaliado pelo escore do Mini-BESTest [22 (3) vs. 24 (2); p<0,001] quando comparado ao GC. O equilíbrio postural nos pacientes em HD apresentou correlação significante com a velocidade de marcha (p= 0.381; p= 0.017) e a força muscular avaliada pelo teste de sentar e levantar (p= -0,358; p= 0,027). Na regressão linear múltipla foi observada associação do equilíbrio postural com a velocidade de marcha, sendo o coeficiente de determinação múltiplo de 0,291 e o coeficiente de determinação múltiplo ajustado de 0,231. Conclusão: Pacientes em HD apresentaram pior equilíbrio postural quando comparados a indivíduos sem DRC. O equilíbrio postural foi associado à velocidade de marcha nesses pacientes.

Palavras-chaves: Equilíbrio Postural; Acidentes por Quedas; Diálise Renal; Insuficiência Renal Crônica.

ABSTRACT

Introduction: Patients with chronic kidney disease (CKD) undergoing hemodialysis (HD) show several factors that contribute to postural balance impairment and higher risk of falls. **Objective:** To compare postural balance between HD patients and subjects without CKD, and to evaluate the factors associated with impairment of postural balance in these patients. **Material and methods:** A cross-sectional study was conducted, including a group of Hemodialysis patients (HG) (n= 39, 55.1 \pm 7.7 years, 53.8% males) and a control group (CG) (n= 39, 55.3 \pm 7.5 years, 53.8% male). Participants were submitted to the following evaluations: postural balance (Mini Balance Evaluation Systems Test - Mini-BESTest), functional mobility (Time Up and Go), gait speed (Gait Speed Measured over 4 m), muscle strength (handgrip and sit-to-stand test), and quality of life (36-Item Short Form Survey questionnaire). **Results:** The HG showed worse postural balance evaluated by Mini-BESTest score [22 (3) vs. 24 (2), p<0.001) when compared to CG. Postural balance was significantly correlated with gait speed (ρ = 0.381, ρ = 0.017) and muscle strength evaluated by the sit-to-stand test (ρ = -0.358, p<0.027). The linear regression showed an association between the postural balance and the gait speed. The multiple R-squared was 0.291 and the adjusted R-squared was 0.231. **Conclusion:** In the present study, HD patients showed worse postural balance when compared to the subjects without CKD. The postural balance was associated with gait speed in these patients.

Key-words: Postural Balance; Accidental Falls; Renal Dialysis; Chronic Kidney Disease.

Submetido: 02/10/2019 Aceito: 23/10/2019

INTRODUÇÃO

Pacientes com doença renal crônica (DRC) em hemodiálise (HD) podem apresentar complicações como miopatia urêmica, distúrbios ósseos e disfunção neurológica que, associados aos efeitos indesejáveis do processo de diálise, ocasionam alterações de integração sensorial e controle da postura, comprometendo o equilíbrio postural.¹⁻⁵ Estudos prévios confirmaram que pacientes em HD apresentam pior equilíbrio postural quando comparados a um grupo controle.^{1,2,4} Além disso, uma única sessão de HD foi capaz de alterar o equilíbrio postural dos pacientes, o que foi confirmado em estudos que compararam o equilíbrio antes e após o procedimento de diálise.^{3,4}

O comprometimento do equilíbrio postural dos pacientes em HD aumenta o risco de quedas e as consequências inerentes a esse evento.²⁻⁴ As quedas são comuns nesses pacientes e sua incidência varia entre 1,18 e 1,6 quedas/paciente-ano e esse é um importante fator que aumenta os custos e a morbimortalidade na DRC.⁶ Além da alteração do equilíbrio postural, fatores como a presença de doenças cardiovasculares e diabetes mellitus, a sarcopenia, a baixa força muscular, a fragilidade e a saúde mental prejudicada podem aumentar o risco de queda nos pacientes com DRC.⁶⁻⁸

Considerando a importância da avaliação do equilíbrio postural nos pacientes em HD que apresentam alto risco de quedas, escalas como a *Performance-Oriented Mobility Assessment* (POMA),⁹ a *Short Physical Performance Battery* (SPPB) e a *Berg Balance Scale* foram utilizadas em estudos prévios.⁹⁻¹² Entretanto, componentes do controle postural como verticalidade, controle reativo da postura e influências cognitivas, que não são contemplados nessas escalas, devem ser considerados na avaliação do equilíbrio postural. Nesse contexto, tem sido recomendada a utilização do *Mini Balance Evaluation Systems Test* (Mini-BESTest) que avalia oito dos nove componentes relacionados com o equilíbrio e mensura tarefas que refletem melhor as atividades de vida diária.¹²

O Mini-BESTest engloba testes já consagrados na literatura e foi validado com boa confiabilidade nos pacientes em HD.^{13,14} Apesar da sua ampla utilização em diferentes populações,¹⁵ ainda não foi comparado o equilíbrio postural de pacientes em HD com um grupo controle utilizando o Mini-BESTest.

Portanto, o objetivo primário deste estudo foi comparar o equilíbrio postural de pacientes em HD com indivíduos sem DRC. O objetivo secundário foi avaliar a associação do equilíbrio postural com a mobilidade funcional, a velocidade de marcha, a força muscular e a qualidade de vida nos indivíduos em hemodiálise.

MATERIAL E MÉTODOS

Foi realizado estudo transversal, desenvolvido no período de dezembro de 2017 a fevereiro 2019. O protocolo deste estudo seguiu os princípios éticos da Declaração de Helsinque e foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos do Hospital Universitário da Universidade Federal de Juiz de Fora (HU-UFJF) (protocolo nº 2.458.176/2017). Todos os participantes que concordaram em participar do estudo assinaram o Termo de Consentimento Livre e Esclarecido.

A amostra foi selecionada por conveniência e dividida em dois grupos: grupo hemodiálise (GH) – formado por pacientes com DRC em HD, recrutados na Unidade do Sistema Urinário do HU-UFJF (Juiz de Fora, Minas Gerais, Brasil), no Centro de Tratamento de Doenças Renais (Juiz de Fora, Minas Gerais, Brasil) e na Clínica Pró-Renal (Barbacena, Minas Gerais, Brasil); e grupo controle (GC) – composto de indivíduos residentes na comunidade, sendo recrutados os acompanhantes de pacientes do HU-UFJF presentes nos Setores de Cirurgia Ambulatorial, Nefrologia, Fisioterapia e Endoscopia.

No GH foram incluídos pacientes com idade entre 40 e 70 anos, em HD três vezes por semana, totalizando 12 horas semanais, por um período mínimo de três meses. Para o GC foram selecionados indivíduos sem DRC, pareados por gênero, idade e nível de atividade física com os pacientes do GH.

Os critérios de exclusão foram: índice de massa corporal (IMC) maior ou igual a 30 kg/m²; presença de distúrbios neurológicos, musculoesqueléticos e osteoarticulares que pudessem afetar o desempenho nos testes propostos (como acidente vascular cerebral, amputação, etc.); déficits visuais não corrigidos; alterações vestibulares ou psiquiátricas; uso de dispositivo auxiliar de marcha; presença de comorbidade grave e instável (angina instável, insuficiência cardíaca descompensada, história de infarto do miocárdio nos últimos três meses, pneumopatias graves, infecção sistêmica aguda); hospitalização nos três meses anteriores à inclusão no estudo; e incapacidade de compreensão dos métodos de avaliação utilizados.

As avaliações foram realizadas antes da segunda ou terceira sessão de HD da semana ou agendadas em dia não dialítico para o GH e em horário conveniente para o GC. Todas as avaliações foram conduzidas por uma equipe previamente treinada.

Inicialmente, o equilíbrio postural foi avaliado pelo Mini-BESTest, a mobilidade funcional pelo teste Timed Up and Go (TUG) e a velocidade de marcha pelo Gait Speed Measured over 4m (4MGS). Na sequência foi mensurada a força muscular de preensão palmar por dinamometria manual e dos membros inferiores pelo teste de sentar e levantar de 10 repetições. Por último, foi aplicado o questionário de qualidade de vida 36-Item Short Form Survey (SF-36).

Para os dois grupos foram coletados: idade, gênero, raça, escolaridade, atividade profissional, renda familiar, IMC, comorbidades, história prévia de quedas no ano anterior, histórico de fraturas e nível de atividade física avaliado pelo Questionário Internacional de Atividade Física (IPAQ) – versão curta. Foram registrados no GH dados referentes à etiologia da DRC, tempo de HD e os seguintes parâmetros laboratoriais: índice de eficácia da hemodiálise (Kt/V), hemoglobina (g/dL), potássio (mEq/L), fósforo (mEq/L), cálcio (mg/dL), vitamina D (ng/mL) e paratormônio (pg/mL). Todos os dados foram coletados dos prontuários ou por meio de entrevista. A coleta de sangue para o exame laboratorial foi realizada antes da segunda sessão de HD do mês.

Em relação ao equilíbrio postural, foi aplicado o Mini-BESTest que é composto de 14 tarefas organizadas em quatro categorias: ajustes posturais antecipatórios, controle postural reativo, orientação sensorial e marcha dinâmica. Seu escore máximo é de 28 pontos, sendo que quanto maior o escore, melhor o desempenho no teste. 13,17

O teste TUG foi utilizado para avaliar a mobilidade funcional, no qual foi cronometrado o tempo em que o participante saiu da posição sentada de uma cadeira com braços, levantou, deambulou em velocidade habitual por três metros e retornou ao assento na mesma posição inicial. Foram realizadas duas medidas, sendo registrado o menor tempo.¹⁸

Para a velocidade de marcha com o teste 4MGS foi cronometrado o tempo em que o participante caminhou com a velocidade usual por um espaço demarcado de oito metros, sendo desconsiderados dois metros de aceleração e dois metros de desaceleração. O teste foi realizado duas vezes e a maior velocidade foi considerada.¹⁹

Para avaliar a força muscular de preensão palmar foi utilizado um dinamômetro de força manual (Saehan Corporation, 973, Yangdeok-Dong, Masan 630-728, Korea). Após o posicionamento recomendado, o participante foi estimulado a realizar três repetições de preensão palmar com o máximo de força possível, sendo considerada a medida de maior valor. Para a avaliação da força muscular de membros inferiores foi utilizado o teste de sentar e levantar de 10 repetições, em que foi registrado o tempo para o participante realizar dez repetições consecutivas de levantar e sentar de uma cadeira o mais rápido possível. 21,22

O questionário de qualidade de vida SF-36 é composto por 36 itens que avaliam oito dimensões (capacidade funcional, estado geral de saúde, vitalidade, aspectos físicos, aspectos sociais, aspectos emocionais, dor e saúde mental). Para cada dimensão foi obtido um escore que variou de 0 a 100, sendo que quanto menor o escore, maior o comprometimento da qualidade de vida.²³

No cálculo amostral, para um poder de 90% e um alfa de 5%, considerando o escore médio e o desvio

padrão do Mini-BESTest de pacientes em HD (21,7 \pm 6) e indivíduos da população geral (25,9 \pm 4,7),14,24 foram necessários 35 participantes por grupo.

O teste de Shapiro-Wilk foi utilizado para a avaliação do padrão de normalidade. Os dados foram expressos em média ± desvio padrão, mediana (intervalo interquartil) ou porcentagem, quando apropriado. As comparações entre os grupos foram realizadas pelos testes t de Student não pareado, Mann-Whitney ou Oui-quadrado.

No GH também foi realizada uma análise de correlação entre o escore do Mini-BESTest com a mobilidade funcional, a velocidade de marcha, a força muscular e a qualidade de vida pelos testes de Pearson ou Spearman, quando apropriado. As variáveis que apresentaram correlação estatisticamente significativa (p<0,05) foram inseridas em um modelo de regressão linear múltipla como variáveis independentes, sendo que o escore do Mini-BESTest foi inserido como variável dependente. Esse modelo foi ajustado para a idade.

O nível de significância considerado foi o valor de p<0,05 e as análises foram realizadas no programa Statistical Package for the Social Science (SPSS) versão 22.0 (Chicago, USA).

RESULTADOS

Dos 315 pacientes avaliados para a elegibilidade no estudo (n= 99 na Unidade do Sistema Urinário do HU-UFJF, n= 117 no Centro de Tratamento de Doenças Renais e n= 99 na Clínica Pró-Renal), 276 foram excluídos (n= 84 na Unidade do Sistema Urinário do HU-UFJF, n= 110 no Centro de Tratamento de Doenças Renais e n= 82 na Clínica Pró-Renal) e 39 foram considerados para análise no GH. Para a inclusão dos 39 participantes do GC, foram abordados 390 indivíduos, sendo excluídos 351 até o pareamento com os participantes do GH (figura 1).

Na comparação das características demográficas e clínicas entre os grupos, foi observada diferença estatisticamente significante para raça, escolaridade, atividade profissional, renda familiar, IMC e presença de hipertensão arterial e doença cardiovascular. A etiologia mais prevalente da DRC foi a hipertensão arterial. Os pacientes estavam bem dialisados e com níveis adequados para a maioria dos parâmetros laboratoriais (tabela 1).

O GH apresentou maior comprometimento do equilíbrio postural, avaliado pelo escore total e todas as categorias do Mini-BESTest, quando comparado ao GC (p<0,05). Além disso, os pacientes do GH apresentaram pior desempenho no teste de velocidade de marcha, menor força muscular e redução em quatro domínios do questionário de qualidade de vida SF-36 (capacidade funcional, estado geral de saúde, vitalidade e aspectos físicos) em relação ao GC (p<0,05) (tabela 2).

No GH o escore total do Mini-BESTest apresentou

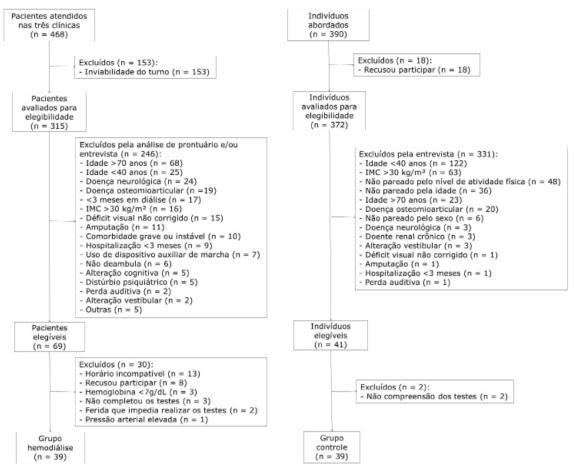


Figura 1: fluxograma de seleção da amostra.

correlação estatisticamente significativa com o 4MGS e o teste de sentar e levantar de 10 repetições (tabela 3). Na regressão linear múltipla foi observada associação do equilíbrio postural com a velocidade de marcha, sendo o coeficiente de determinação múltiplo de 0,291 e o coeficiente de determinação múltiplo ajustado de 0,231 (tabela 4).

DISCUSSÃO

O presente estudo parece ter sido o primeiro a comparar o equilíbrio postural, avaliado pelo Mini-BESTest, de pacientes em HD com indivíduos sem DRC, pareados por gênero, idade e nível de atividade física. Além disso, foi avaliada a associação do equilíbrio com a mobilidade funcional, a velocidade de marcha, a força muscular e a qualidade de vida nesses pacientes. Os pacientes em HD apresentaram pior equilíbrio postural e o escore total do Mini-BESTest foi associado com a velocidade de marcha.

Corroborando com dados presentes na literatura, os pacientes do GH apresentaram maior prevalência de hipertensão arterial e doença cardiovascular em relação ao GC. O GH também apresentou menor atividade profissional, o que impactou na diferença observada

na renda familiar entre os grupos. Além disso, a rotina de tratamento e o quadro clínico dos pacientes em HD parecem inviabilizar a prática profissional. A diferença encontrada no IMC entre os grupos não apresentou relevância clínica, considerando que não foram incluídos pacientes classificados como obesos, o que representaria um fator comprometedor do equilíbrio postural.²⁵

Estudos prévios demonstraram que pacientes em HD apresentam comprometimento de equilíbrio postural quando comparados a indivíduos saudáveis por meio da posturografia, 1,2,4 que é considerada padrão ouro para mensuração do equilíbrio por avaliar a oscilação das forças que controlam a postura.26 Entretanto, a posturografia é um método de custo elevado e pouco utilizado na prática clínica, o que torna relevante a utilização de testes com maior aplicabilidade e viabilidade clínica, como o Mini-BESTest. Segundo Sibley et al12, esse teste permite uma avaliação mais completa do equilíbrio postural por contemplar componentes que estão associados ao equilíbrio e a manutenção da postura. No presente estudo, o GH apresentou pior escore total do Mini-BESTest e nas suas quatro categorias, sugerindo alteração nos diferentes componentes do equilíbrio postural, o que vai de encontro com os relatos observados na literatura, apesar da distinção dos métodos utilizados.

O comprometimento do equilíbrio postural em

Tabela 1: Características demográficas e clínicas dos grupos hemodiálise e controle.

Variáveis	Grupo hemodiálise (n = 39)	Grupo controle (n = 39)	p-valor
Demográficas			
Idade (anos), média ± DP	55,1 ± 7,7	55,3 ± 7,5	0,950
Gênero masculino, %	53,8	53,8	1
Raça			0,003
Negro, %	38,5	10,2	
Branco, %	33,3	69,2	
Pardo, %	28,2	20,6	
Escolaridade (anos), mediana (IIQ)	4,0 (4,2)	8,0 (7,0)	0,015
Atividade profissional, %	15,4	46,1	0,003
Renda familiar (R\$), mediana (IIQ)	1.908,0 (1.546,0)	2.385,0 (2.500,0)	0,035
Clínicas	, , , ,	, , , ,	•
IMC (kg/m 2), média \pm DP	24,2 ± 3,8	25,8 ± 2,9	0,041
Tabagismo, %	15,4	15,4	1
Etilismo, %	0	5,1	0,152
Comorbidades		,	,
Hipertensão arterial, %	97,3	43,6	<0,001
Doença cardiovascular, %	70,3	0	<0,001
Dislipidemia, %	18,9	25,6	0,482
Diabetes mellitus, %	18,9	15,4	0,683
Ansiedade, %	16,2	10,2	0,442
Outras, %	11,0	25,0	0,096
Histórico de quedas, %	41,0	25,6	0,150
Histórico de fratura, %	7,8	2,6	0,305
Nível de atividade física	, -	, -	1
Irregularmente ativo B, %	35,9	35,9	_
Ativo, %	28,2	28,2	
Sedentário, %	20,6	20,6	
Irregularmente ativo A, %	10,2	10,2	
Muito ativo, %	5,1	5,1	
Etiologia da doença renal crônica	-,	-,	
Hipertensão arterial, %	64,9	-	-
Glomerulopatia, %	12,9	-	-
Diabetes mellitus, %	10,9	-	-
Uropatia obstrutiva, %	7,8	-	_
Indeterminada, %	3,5	-	_
Tempo de diálise (anos), mediana	3,5 (7,6)	-	-
(IIQ)	-1- (1-)		
Laboratoriais			
Kt/V, mediana (IIQ)	1,5 (0,4)	-	-
Hemoglobina (g/dL), média ± DP	10,6 ± 1,8	-	-
Potássio (mEq/L), média ± DP	5,1 ± 0,9	-	-
Fósforo (mEq/L), mediana (IIQ)	5,0 (2,2)	-	-
Cálcio (mg/dL), mediana (IIQ)	8,8 (0,9)	-	-
Vitamina D (ng/mL), média ± DP*	34,0 ± 13,3	-	-
Paratormônio (pg/mL), mediana (IIQ)	358,6 (572,0)	-	-

DP= desvio padrão; IIQ= intervalo interquartil; IMC= índice de massa corporal; Kt/V= índice de eficácia da hemodiálise. *n= 16

Tabela 2: Resultados dos testes de avaliação física e qualidade de vida nos grupos hemodiálise e controle.

Variáveis	Grupo hemodiálise	Grupo controle
	(n= 39)	(n= 39)
Mini-BESTest		
Escore total, mediana (IIQ)	22,0 (3,0)	24,0 (2,0)
Categorias		
Ajustes posturais antecipatórios, mediana	5,0 (1,0)	6,0 (1,0)
(IIQ)		
Controle postural reativo, mediana (IIQ)	4,0 (2,0)	5,0 (1,0)
Orientação sensorial, mediana (IIQ)	5,0 (0)	6,0 (1,0)
Marcha dinâmica, mediana (IIQ)	8,0 (1,0)	8,0 (1,0)
Teste TUG (s), mediana (IIQ)	8,6 (2,1)	8,1 (1,6)
4MGS (m/s), média ± DP	$1,3 \pm 0,2$	$1,4 \pm 0,2$
Força de preensão palmar (Kgf), mediana (IIQ)	26,0 (10,0)	34,0 (17,0)
Sentar e levantar de 10 repetições (s), mediana (IIQ)	33,1 (9,6)	28,6 (7,1)
Questionário de qualidade de vida SF-36		
Capacidade funcional, mediana (IIQ)	65,0 (35,0)	90,0 (15,0)
Estado geral de saúde, média ± DP	$52,1 \pm 20,6$	$70,3 \pm 17,9$
Vitalidade, média ± DP	57,7 ± 21,9	$68,5 \pm 16,1$
Aspectos físicos, mediana (IIQ)	0 (50,0)	100,0 (25,0)
Aspectos sociais, mediana (IIQ)	75,0 (50,0)	75,0 (37,5)
Aspectos emocionais, mediana (IIQ)	33,3 (100,0)	33,3 (67,0)
Dor, mediana (IIQ)	62,0 (43,0)	72,0 (33,0)
Saúde mental, média ± DP	$66,9 \pm 18,9$	$73,6 \pm 16,7$

DP= desvio padrão; IIQ= intervalo interquartil; Mini-BESTest= Mini Balance Evaluation Systems Test; TUG= Timed Up and Go; 4MGS= Gait Speed Measured over 4 m; SF-36= 36-Item Short Form Survey.

Tabela 3: Resultados da correlação entre o escore do Mini-BESTest com a mobilidade funcional, a velocidade de marcha, a força muscular e a qualidade de vida para o grupo hemodiálise.

Variáveis	ρ	<i>p</i> -valor
Teste TUG	-0,244	0,134
4MGS	0,381	0,017
Força de preensão palmar	0,281	0,084
Teste de sentar e levantar de 10 repetições	-0,358	0,027
Questionário de qualidade de vida SF-36		
Capacidade funcional	0,296	0,067
Estado geral de saúde	-0,015	0,929
Vitalidade	0,248	0,128
Aspectos físicos	0,164	0,319
Aspectos sociais	0,121	0,462
Aspectos emocionais	0,146	0,375
Dor	-0,006	0,973
Saúde mental	0,159	0,335

Mini-BESTest= Mini Balance Evaluation Systems Test; TUG= Timed Up and Go; 4MGS= Gait Speed Measured over 4 m; SF-36= 36-Item Short Form Survey.

Tabela 4: Resultados da regressão linear múltipla com o escore do Mini-BESTest como variável dependente.

Variáveis independentes	Coeficiente β (IC)	P
Idade	0,018 (-0,061; 0,097)	0,642
4MGS	3,450 (0,295; 6,604)	0,033
Sentar e levantar de 10 repetições	-0,060 (-0,133; 0,012)	0,098

O Modelo incluiu variáveis significativamente correlacionadas com o escore do Mini-BESTest ajustado para a idade. Mini-BESTest= Mini Balance Evaluation Systems Test; 4MGS= Gait Speed Measured over 4 m.

pacientes com DRC submetidos à HD também foi confirmado por outros testes. Nesse sentido, Rossier et al⁹ observaram baixo escore na escala POMA avaliada antes da sessão de HD, sendo que esse escore apresentou redução quando a escala foi aplicada após a sessão de diálise. Wang et al¹⁰ realizaram um estudo longitudinal de avaliação do equilíbrio postural por meio da escala SPPB com pacientes em HD e observaram declínio do equilíbrio após 12 e 36 meses de acompanhamento. Também utilizando a escala SPPB, Reese et al²⁷ observaram que pacientes em HD apresentaram pior equilíbrio postural quando comparados a pacientes nos estágios iniciais da DRC. Além dos estágios da DRC avaliado pela taxa de filtração glomerular, esses autores observaram que outros fatores também estão associados com o pior equilíbrio postural nos pacientes renais crônicos, como idade avançada, menores renda e escolaridade, maior IMC, deficiência de vitamina D e presença de doença cardiovascular.

Adicionalmente, a alteração do equilíbrio postural nos pacientes em HD está associada com as complicações da doença e também ao próprio processo de diálise. Dentre essas complicações se destacam a fraqueza e fadiga muscular, a polineuropatia, os distúrbios de coordenação, a disfunção cognitiva e a instabilidade hemodinâmica. 5 Com relação ao processo de diálise, efeitos hemodinâmicos deletérios do procedimento e a queda pressórica após a sessão alteram o equilíbrio postural dos pacientes. 4,9

No presente estudo, o único fator associado com o equilíbrio postural nos pacientes em HD foi a velocidade de marcha, mostrando que a alteração da função física pode influenciar o controle postural desses pacientes. Dados semelhantes foram encontrados por Abe et al²⁸ que observaram associação da velocidade de marcha com o equilíbrio estático avaliado pelo teste one-leg standing em pacientes em HD.

Pelo exposto, nossos resultados confirmaram que os pacientes em HD apresentam comprometimento do equilíbrio postural estático e dinâmico avaliado pelo Mini-BESTest. Uma das consequências mais significativas dessa alteração é o aumento do risco de quedas, que está associado diretamente a maior morbidade e mortalidade nos pacientes renais crônicos.⁶ Sendo assim, programas de reabilitação para os pacientes em HD devem adicionar exercícios de equilíbrio com o objetivo de prevenir a ocorrência de quedas.

Em um estudo recente, Frih et al²⁹ avaliaram

os efeitos do treino de equilíbrio adicionado em um programa de treinamento de força e resistência muscular em pacientes submetidos à HD. O treino de equilíbrio foi aplicado em dias não dialíticos e incluiu atividades como apoio unipodal, atividades em superfícies irregulares, sentar e levantar, marcha nas pontas dos pés, entre outros. Após seis meses de treinamento, foi observado melhora do equilíbrio postural avaliado pelo Mini-BESTest e da mobilidade funcional mensurada pelo teste TUG. Apesar dessa evidência inicial, novos estudos são necessários para avaliar o efeito do treino de equilíbrio postural e de prevenção do risco de quedas nesses pacientes.

O presente estudo apresentou algumas limitações. Apesar do recrutamento dos pacientes ter sido conduzido em três centros de HD, os resultados não devem ser generalizados para toda a população de pacientes com DRC em HD. Outra limitação é que a diferença observada no nível de escolaridade entre os grupos pode ter influenciado no melhor desempenho das avaliações. Finalmente, o número de pacientes em HD recrutados não permitiu avaliar satisfatoriamente os fatores associados com o equilíbrio postural.

CONCLUSÃO

Pacientes em HD apresentaram pior equilíbrio postural quando comparados a indivíduos sem DRC. O equilíbrio postural foi associado à velocidade de marcha nesses pacientes.

FINANCIAMENTO

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e da Universidade Federal de Juiz de Fora.

AGRADECIMENTOS

Agradecemos Rodrigo Schinniger Assun Garcia e Emanuele Poliana Lawall Gravina pela importante colaboração na execução deste estudo.

CONFLITO DE INTERESSES

Todos os autores declaram não haver conflito de

interesse.

REFERÊNCIAS

- 1. Magnard J, Hristea D, Lefrancois G, Testa A, Paris A, Deschamps T. Implicit postural control strategies in older hemodialysis patients: an objective hallmark feature for clinical balance assessment. Gait Posture. 2014; 40(4):723-6. doi: 10.1016/j.gaitpost.2014.07.009
- 2. Shin S, Chung HR, Fitschen PJ, Kistler BM, Park HW, Wilund KR et al. Postural control in hemodialysis patients. Gait Posture. 2014; 39(2):723-7. doi: 10.1016/j.gaitpost.2013.10.006
- 3. Magnard J, Lardy J, Testa A, Hristea D, Deschamps T. The effect of hemodialysis session on postural strategies in older end-stage renal disease patients. Hemodial Int. 2015; 19(4):553-61. doi: 10.1111/hdi.12307
- 4. Erken E, Ozelsancak R, Sahin S, Yılmaz EE, Torun D, Leblebici B et al. The effect of hemodialysis on balance measurements and risk of fall. Int Urol Nephrol. 2016; 48(10):1705-11. doi: 10.1007/s11255-016-1388-7
- 5. Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016; 4(4):360-73. doi: 10.1016/S2213-8587(16)00033-4
- 6. López-Soto PJ, De Giorgi A, Senno E, Tiseo R, Ferraresi A, Canella C et al. Renal disease and accidental falls: a review of published evidence. BMC Nephrol. 2015; 16:176. doi: 10.1186/s12882-015-0173-7
- 7. Abdel-Rahman EM, Turgut F, Turkmen K, Balogun RA. Falls in elderly hemodialysis patients. QJM. 2011; 104(10):829-38. doi: 10.1093/qjmed/hcr108
- 8. Khow KSF, Visvanathan R. Falls in the aging population. Clin Geriatr Med. 2017; 33(3):357-68. doi: 10.1016/j. cger.2017.03.002
- 9. Rossier A, Pruijm M, Hannane D, Burnier M, Teta D. Incidence, complications and risk factors for severe falls in patients on maintenance haemodialysis. Nephrol Dial Transplant. 2012; 27(1):352-7. doi: 10.1093/ndt/gfr326
- 10. Wang AY, Sherrington C, Toyama T, Gallagher MP, Cass A, Hirakawa Y et al. Muscle strength, mobility, quality of life and falls in patients on maintenance haemodialysis: a prospective study. Nephrology. 2017; 22(3):220-7. doi: 10.1111/nep.12749
- 11. Boudville N, Inderjeeth C, Elder GJ, Glendenning P. Association between 25-hydroxyvitamin D, somatic muscle weakness and falls risk in end-stage renal failure. Clin Endocrinol. 2010; 73(3):299-304. doi: 10.1111/j.1365-2265.2010.03821.x

- 12. Sibley KM, Beauchamp MK, Van Ooteghem K, Straus SE, Jaglal SB. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review. Arch Phys Med Rehabil. 2015; 96(1):122-32. doi: 10.1016/j.apmr.2014.06.021
- 13. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010; 42(4):323-31. doi: 10.2340/16501977-0537
- 14. Jácome C, Flores I, Martins F, Castro C, McPhee CC, Shepherd E et al. Validity, reliability and minimal detectable change of the balance evaluation systems test (BESTest), mini-BESTest and brief-BESTest in patients with end-stage renal disease. Disabil Rehabil. 2018; 40(26):3171-6. doi: 10.1080/09638288.2017.1375034
- 15. Di Carlo S, Bravini E, Vercelli S, Massazza G, Ferriero G. The Mini-BESTest: a review of psychometric properties. Int J Rehabil Res. 2016; 39(2):97-105. doi: 10.1097/MRR.00000000000000153
- 16. Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC et al. Questionário Internacional de Atividade Física (IPAQ): estudo de validade e reprodutibilidade no Brasil. Rev Bras Ativ Fís Saúde. 2001; 6(2):1-13.
- 17. Maia AC, Rodrigues-de-Paula F, Magalhães LC, Teixeira RLL. Cross-cultural adaptation and analysis of the psychometric properties of the balance evaluation systems test and MiniBESTest in the elderly and individuals with Parkinson's disease: application of the Rasch model. Braz J Phys Ther. 2013; 17(3):195-217. doi: 10.1590/S1413-35552012005000085
- 18. Podsiadlo D, Richardson S. The Timed "Up & Dp & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991; 39(2):142-8. doi: 10.1111/j.1532-5415.1991. tb01616.x
- 19. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al. A Short Physical Performance Battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994; 49(2):85-94. doi: 10.1093/geronj/49.2.m85
- 20. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am. 1984; 9(2):222-6. doi: 10.1016/s0363-5023(84)80146-x
- 21. Segura-Ortí E, Martínez-Olmos FJ. Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis. Phys Ther. 2011; 91(8):1244-52. doi: 10.2522/ptj.20100141

- 22. Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle strength. Am J Med. 1985; 78(1):77-81. doi: 10.1016/0002-9343(85)90465-6
- 23. Ciconelli RM, Ferraz MB, Santos W, Meimão I, Quaresma MR. Tradução para a língua portuguesa e validação do questionário genérico de avaliação de qualidade de vida SF-36 (Brasil SF-36). Rev Bras Reumatol. 1999; 39(3):143-50.
- 24. O'Hoski S, Sibley KM, Brooks D, Beauchamp MK. Construct validity of the BESTest, mini-BESTest and briefBESTest in adults aged 50 years and older. Gait Posture. 2015; 42(3):301-5. doi: 10.1016/j.gaitpost.2015.06.006
- 25. Nascimento JA, Silva CC, Santos HH, Ferreira JJ, Andrade PR. A preliminary study of static and dynamic balance in sedentary obese young adults: the relationship between BMI, posture and postural balance. Clin Obes. 2017; 7(6):377-83. doi: 10.1111/cob.12209
- 26. Duarte M, Freitas SMSF. Revisão sobre posturografia baseada em plataforma de força para avaliação do equilíbrio. Rev Bras Fisioter. 2010; 14(3):183-92. doi: 10.1590/S1413-35552010000300003
- 27. Reese PP, Cappola AR, Shults J, Townsend RR, Gadegbeku CA, Anderson C et al. Physical performance and frailty in chronic kidney disease. Am J Nephrol. 2013; 38(4):307-15. doi: 10.1159/000355568
- 28. Abe Y, Matsunaga A, Matsuzawa R, Kutsuna T, Yamamoto S, Yoneki K et al. Determinants of slow walking speed in ambulatory patients undergoing maintenance hemodialysis. PLoS One. 2016; 11(3):1-15. doi:10.1371/journal.pone.0151037
- 29. Frih B, Mkacher W, Jaafar H, Frih A, Ben Salah Z, El May M et al. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis. Disabil Rehabil. 2018; 40(7):784-90. doi: 10.1080/09638288.2016.1276971
- 30. Dubuc MM, Barbat-Artigas S, Karelis AD, Aubertin-Leheudre M. Relationship between the level of education and functional capacity in active elderly adults. J Frailty Aging. 2014; 3(3):148-52. doi: 10.14283/jfa.2014.16